Патенты автора Пащенко Александр Федорович (RU)

Изобретение относится к устройствам для извлечения смеси углеводородов, в частности смеси тяжелых углеводородов, из подземного пласта путем внутрипластового горения. Устройство для внутрипластового горения содержит измельчитель алюминиевой стружки, сепаратор и датчик температуры, размещенный в скважине, по показаниям которого подаются порции смеси дозатора. При этом измельчитель алюминиевой стружки последовательно связан с вибрационным грохотом для отделения крупных элементов стружки. Сепаратор связан со смесителем, выполненным в виде сатуратора, соединенным с дозатором. При этом нагнетатель алюминиевой стружки состоит из дозатора, включающего приемник стружки, имеющий в верхней части крышку с шарниром и отводящий гибкий шланг, расположенный в нижней части. Техническим результатом является повышение равномерности охвата пласта горением, снижение вязкости находящейся в пласте нефти и снижение расхода воздуха. 4 ил.

Изобретение относится к области радиосвязи с использованием летно-подъемных средств для расширения зоны приема радиотехнических средств связи, вещания, контроля и управления. Привязной аэростат содержит оболочку 1 в виде двояковыпуклой линзы, заполненной легким газом, контейнер 14 с аппаратурой, тросовую разводку 15, энергетические установки, имеющие ветропривод, и электрический генератор, питающий аппаратуру. Нижний конец тросовой развязки сочленен тросом 16 с лебедкой 17. В трос вставлена электропроводящая жила, связывающая контейнер 14 с источником питания. Изобретение направлено на повышение энергонасыщенности и обеспечение большей автономности. 4 з.п. ф-лы, 10 ил.

Изобретение относится к области летно-подъемных радиотехнических средств. Привязной аэростат содержит двояковыпуклую оболочку 1 с легким газом, контейнер 11 с аппаратурой, тросовой разводкой 12 и ветропривод с электрическим генератором, питающим аппаратуру в контейнере. Привязной аэростат снабжен баллоном 9, выполненным с возможностью стравливания воздуха и примыкающим снизу к оболочке 1, компрессором 5, выполненным с возможностью нагнетания воздуха в баллон 9, гибкой солнечной панелью, которая покрывает верхнюю поверхность оболочки, и вентилятором, установленным с возможностью компенсировать вращательное движение оболочки 1 по высоте и углу отклонения по вертикали. Оболочка 1 сформирована из полиамида и снабжена каркасом. Изобретение направлено на обеспечение большей продолжительности полета и повышение энергонасыщенности. 2 з.п. ф-лы, 6 ил.

Изобретение относится к средствам генерирования сейсмической энергии, например упругих колебаний в нефтеносных пластах, в частности к средствам ударного воздействия на призабойную зону скважин и нефтенасыщенные пласты при добыче углеводородов. Способ ударного воздействия на призабойную зону заключается в том, что в межэлектродное пространство устанавливают электроды. Затем на электроды подают импульс высокого напряжения, формируя между ними электрическую дугу и производя, таким образом, пробой межэлектродного промежутка и получение плазменного канала между электродами с образованием электрических разрядов в жидкой среде скважины. При этом межэлектродное пространство ионизируют. Пробой межэлектродного пространства производят повторяющимися по сигналам пьезодатчиков импульсами высокого напряжения. Причем энергию пробоя межэлектродного промежутка используют для восстановления разрушенного разрядом ионизированного слоя. При этом подача импульсов производится в такт с колебательным процессом, возникающим в скважине. Техническим результатом является повышение дебита из скважины на стадии добычи, обеспечивающего быстрый и с наименьшими трудозатратами выход продукта на максимальные показатели и повышение надежности работы системы. 2 з.п. ф-лы, 4 ил.

Изобретение относится к средствам генерирования сейсмической энергии, например упругих колебаний в нефтеносных пластах, в частности к средствам ударного воздействия на призабойную зону скважин и нефтенасыщенные пласты при добыче углеводородов, например нефти. Устройство для ударного воздействия на призабойную зону скважины импульсами давления содержит внутренний и внешний электроды, установленные в гидросреде в полости скважины, разделенные промежутком, и систему подачи импульсов напряжения на электроды, обеспечивает образование плазменного канала между электродами с последующим образованием ударной волны. При этом между электродами расположен ионизатор. Причем устройство снабжено подпружиненным фланцем, являющимся составной частью внутреннего электрода. При этом система подачи импульсов снабжена микропроцессором, датчиками направления движения фланца и сейсмическим датчиком. Техническим результатом является повышение дебита из скважины на стадии добычи, обеспечивающего быстрый и с наименьшими трудозатратами выход продукта на максимальные показатели добычи, и повышение надежности работы системы. 9 ил.

Изобретение относится к способу извлечения смеси тяжелых углеводородов из подземного пласта путем внутрипластового горения. Способ внутрипластового горения заключается в том, что в нефтяном пласте выполняют ряд вертикальных нагнетательных скважин, достигающих пластового резервуара, выполняют также по меньшей мере одну газовую эксплуатационную скважину, отделенную в боковом направлении от ряда нагнетательных скважин, и горизонтальную эксплуатационную скважину, расположенную ниже пластового резервуара и нагнетательных скважин, в каждую нагнетательную скважину подают кислородсодержащий газ и производят зажигание, и из эксплуатационной скважины добывают полученный продукт, а газы, образующиеся в результате внутрипластового горения, получают через пластовый резервуар. После начала горения в одну из вертикальных нагнетательных скважин, предпочтительно в ближайшую к центру горизонтальной нагнетательной скважины, вводят на некоторую глубину датчик температуры, по результатам показаний датчика вводят под давлением порцию сатурированной воздухом воды с добавлением измельченной алюминиевой стружки. После начала горения стружки в ту же вертикальную нагнетательную скважину на некоторое время подают кислородосодержащий газ. Технический результат заключается в повышении производительности скважины, снижении расходов на эксплуатацию и увеличении дебета нефтепродуктов. 1 з.п. ф-лы, 1 ил.

Изобретение относится к кардиологии и может быть использовано для перекачивания крови. Способ осуществляется с помощью насоса, в котором используют волнообразное движение текучей среды в замкнутом объеме, создаваемое сжатием и растяжением пьезоэлементов путем подачи переменного трехфазного возбуждающего напряжения. Насос состоит из трех последовательно соединенных пьезоэлектрических нагнетательных модулей, содержащих внутренние и внешние каналы для текучей среды и перекачиваемой крови. Внешние каналы пьезоэлектрических нагнетательных модулей соединяют между собой, а внутренние каналы соединяют последовательно. Насос чрескожно вводят в артериальный сосуд и продвигают в грудную аорту. Кровообращение поддерживают путем подачи питания на пьезоэлементы. Технический результат заключается в повышении производительности насоса, снижении габаритных размеров и веса. 3 з.п. ф-лы, 9 ил.

Изобретение относится к устройствам для перекачивания текучих сред и может быть использовано в промышленности, на транспорте и в быту при перекачивании жидкостей, а также иных несжимаемых и сжимаемых текучих сред. Устройство для перекачивания текучих сред содержит пьезомодули, установленные в замкнутом объеме, и электрическую систему, подающую возбуждающее трехфазное напряжение на пьезомодули по принципу, согласно которому, сдвигая обмотки в пространстве при определенном питании этих обмоток со сдвигом по фазе, образуют бегущее магнитное поле. Пьезомодули выполнены в виде трех модулей, изготовленных из пакета шайб пьезоэлементов, расположенных в замкнутом пространстве, содержащем центральные и внешние полости, разделенные между собой. Центральные и внешние полости модулей сочленены между собой с помощью шлангов. Технический результат, достигаемый при реализации изобретения, заключается в повышении напора насоса, а также в увеличении КПД. 4 з.п. ф-лы, 8 ил.

Изобретение относится к способам для нагнетания текучих сред и может быть использовано в промышленности, на транспорте и в быту при перекачивании жидкостей, а также иных несжимаемых и сжимаемых текучих сред. В способе нагнетания текучих сред используют бегущую волну деформаций замкнутого объема за счет волнообразного движения, образуемого от сжатия и растяжения пьезоэлементов. При этом подают переменное трехфазное возбуждающее напряжение. Вытеснение текучей среды производят за счет изменения общего объема пакета пьезоэлементов, состоящего из трех модулей, выполненных из шайб. Повышается напор насоса, а также увеличивается КПД. 4 з.п. ф-лы, 6 ил.

Изобретение относится к устройствам для нагнетания текучих сред и может быть использовано в промышленности, на транспорте и в быту при перекачивании жидкостей, а также иных несжимаемых и сжимаемых текучих сред. Нагнетатель состоит из корпуса, внутри которого установлены многослойные пьезокерамические элементы, выполненные в виде цилиндров, защищенных гибкими износостойкими оболочками. Электроды соединены с блоками управления для возбуждения колебаний. На торцах оболочек расположены крышки с присоединенными к ним трубопроводами с впускными и выпускными клапанами. Пьезокерамические элементы выполнены в виде одного цилиндра, помещенного внутри промежуточной трубки с двойными стенками, межстенное пространство которой заполнено эластичным гигроскопическим материалом. Между корпусом и промежуточной трубкой установлен трубчатый корпус с двойными стенками, межстенное пространство которого заполнено воздухом. Повышается напор насоса и кпд. 2 з.п. ф-лы, 7 ил.

Изобретение относится к устройству для утилизации энергии сжатого газа. Устройство содержит каскады низкого и высокого давления, блок измерения расхода газа, радиатор, средства для регулирования температуры газа, поступающего потребителю, основной теплообменник, холодильную камеру, потребитель холода, источник электроэнергии и дополнительный теплообменник. В каскадах низкого и высокого давления в качестве средства регулирования и понижения давления и регулирования расхода газа применены объемно-роторные лопастные машины (ОРЛМ). ОРЛМ состоят из всасывающего и нагнетательного патрубков, входящих в неподвижный статор с концентрично установленным в нем ротором. Ротор снабжен радиальными сквозными каналами. В каналах подвижно размещены пластинчатые элементы, разделяющие между собой всасывающие и нагнетательные полости корпуса статора. Статор снабжен плоской опорной площадкой прямоугольной формы. Опорная площадка жестко сопряжена с корпусом и имеет объемное прямоугольное окно. В окно входит подвижная скользящая плита. Плита снабжена регулировочным винтом. Вал машины в каскаде высокого давления сочленен с первым электрическим генератором. Вал машины в каскаде низкого давления сочленяют со вторым электрическим генератором. Энергию второго электрического генератора используют для подогрева газа в радиаторе. Частоту вращения первого генератора поддерживают стабильной с помощью первой ОРЛМ. Давление газа и массовый его расход на выходе регулируют с помощью второй ОРЛМ. Изобретение направлено на повышение КПД и упрощение конструкции устройства. 5 з.п. ф-лы, 6 ил.

 


Наверх