Патенты автора Кузьмин Виктор Иванович (RU)

Изобретение относится к области металлургии, в частности к устройствам плазменного нанесения покрытий из порошковых материалов на рабочие поверхности различных изделий. Установка состоит из двух плазмотронов, каждый из которых снабжен узлом кольцевого ввода порошковых материалов с газодинамической фокусировкой, при этом один плазмотрон рассчитан на работу в высокоскоростном дозвуковом или сверхзвуковом турбулентном режиме истечения плазменной струи для нанесения покрытий из металлических материалов, а другой работает в низкоскоростном дозвуковом ламинарном режиме истечения плазменной струи для нанесения покрытий из керамических материалов, причем газоразрядная камера каждого плазмотрона, выполненная в виде секционированного канала, расширяющегося от катода к аноду, имеет различное количество секций в зависимости от требуемого режима истечения плазменной струи, а переключение плазмотронов и порошковых дозаторов осуществляют с пульта управления плазменной установкой через блок переключений плазмотронов. Изобретение направлено на расширение технологических возможностей установки, повышение качества напыляемых покрытий и производительности. 2 з.п. ф-лы, 3 ил.

Изобретение относится к плазмотрону для получения порошковых материалов. Плазмотрон содержит сопло и узел ввода распыляемого материала в поток плазмы. Плазмотрон выполнен с секционированной межэлектродной вставкой. Узел ввода распыляемого материала выполнен в виде симметрично расположенных относительно продольной оси симметрии плазмотрона и на одинаковом расстоянии друг от друга каналов ввода распыляемого материала в виде стержней или прутков, выходные концы которых расположены в плазменном канале плазмотрона с возможностью расположения концов распыляемого материала в выходной части сопла плазмотрона. Угол α между проекциями каналов ввода на плоскость, перпендикулярную оси симметрии плазмотрона, составляет 360°/n, где n – количество каналов ввода распыляемого материала. Угол β между осью симметрии плазмотрона и продольной осью канала ввода распыляемого материала составляет от 45 до 90°. Обеспечивается получение узкофракционного состава порошковых материалов повышенного качества. 3 з.п. ф-лы, 4 ил., 2 пр.

Изобретение относится к способу плазменного напыления износостойких порошковых покрытий на детали различных механизмов, используемых в машиностроении, металлургии, энергетике, авиации, судостроении, оборонной промышленности и других сферах производства. Способ включает предварительную дробеструйную обработку и обезжиривание напыляемой поверхности. Сначала напыляют слой покрытия толщиной не более 0,2 мм при высокоскоростном турбулентном режиме истечения плазменной струи с расходом плазмообразующего газа 2,8-3 г/с и с расположением плазмотрона на исходной заданной дистанции от напыляемой поверхности. Прекращают подачу порошка и уменьшают исходную дистанцию плазмотрона от напыляемой поверхности. После этого проводят нагрев поверхности при низкоскоростном ламинарном режиме истечения плазменной струи с расходом плазмообразующего газа 0,7-0,9 г/с до температуры (0,2-0,3)Тпл, где Тпл - температура плавления материала покрытия. Устанавливают плазмотрон на исходной дистанции напыления от напыляемой поверхности и напыляют основной слой покрытия до заданной толщины при высокоскоростном турбулентном режиме истечения плазменной струи с расходом плазмообразующего газа 2,8-3 г/с. Технический результат состоит в формировании износостойкого покрытия толщиной более 2 мм при минимальном уровне остаточных напряжений, которые существенно ниже адгезионной прочности покрытий. 4 ил., 2 пр.

Изобретение относится к области газотермических покрытий, более конкретно к плазменному напылению на детали, эксплуатируемые в экстремальных условиях. Способ нанесения износостойкого покрытия на стальные детали, включающий ввод дисперсного порошка самофлюсующегося сплава на основе никеля через кольцевую щель в воздушно-плазменную струю с последующей газодинамической фокусировкой и напыление его на предварительно обработанную поверхность стальной детали, отличающийся тем, что используют порошок самофлюсующегося сплава на основе никеля состава Ni-Cr-B-Si-C или Ni-Al, частицы которого плакированы твердорастворным сплавом Ni-Cr с толщиной слоя 2-6 мкм, при этом в качестве фокусирующего газа используют смесь воздуха и природного газа, взятых в соотношении природный газ : воздух =(1,86÷4,88):1, а напыление осуществляют при среднемассовой температуре струи плазмы 5750÷6500 К и ее среднемассовой скорости 2170÷2500 м/с. Способ покрытия позволяет в отсутствие операции оплавления значительно повысить твердость и износостойкость получаемых покрытий. 2 табл.

Изобретение относится к области нанесения газотермических покрытий, а именно к способам нанесения плазменных покрытий на детали, работающие в экстремальных условиях. Способ нанесения износостойкого покрытия на стальную поверхность включает очистку поверхности, получение дисперсной порошковой смеси самофлюсующегося сплава и диборида титана, введение в плазменную струю смеси и ее напыление с последующим оплавлением поверхности покрытия. Очистку поверхности осуществляют путем полировки, а в качестве самофлюсующегося сплава используют сплав кобальта, предварительно механически легированный порошком алюминия с размером частиц менее 1 мкм, при этом исходные компоненты смеси взяты в следующем соотношении, мас.%: сплав кобальта 34,0-59,5; алюминий 6,0-10,5; диборид титана 30,0-60,0. Повышается микротвердость и износостойкость покрытия, а также качество покрытия за счет снижения пористости основного слоя. 1 табл., 2 пр.

Изобретение может быть использовано в химической промышленности. Способ синтеза наноразмерных частиц порошка диоксида титана включает газофазную реакцию галогенида титана и кислорода в канале плазменного реактора и последующее охлаждение продуктов реакции в закалочном узле. Пары тетрахлорида титана непосредственно перед подачей в узел инжекции реагентов плазменного реактора смешивают с осушенным кислородсодержащим газом. Осуществляют раздельное управление расходами реагентов перед подачей их в узел инжекции плазменного реактора. Реагенты в канал плазменного реактора подают при температуре 293-700 K. Полученный полупродукт газофазной реакции, содержащий наночастицы диоксида титана, подвергают закалке во встречном потоке осушенного кислородсодержащего закалочного газа. При этом формируют фракционный и фазовый состав наночастиц диоксида титана путем изменения расхода закалочного газа. Для этого изменяют расстояние между срезами сопел закалочного узла в радиальном направлении подачи закалочного газа или изменяют угол подачи закалочного газа в пределах 10-25° относительно радиального направления подачи закалочного газа. Расход закалочного газа при этом превышает суммарный расход смеси газов в канале плазменного реактора. Изобретение позволяет получать особо чистый диоксид титана требуемого фракционного и фазового состава, например рутил или анатаз, с высокой производительностью. 2 ил., 2 пр.

Изобретение относится к области плазменной техники, а именно обработки порошковых материалов (напыление и наплавка покрытий; сфероидизация, испарение и плазмохимическая обработка частиц порошковых материалов) и может найти применение в металлургии, плазмохимии и машиностроительной промышленности

 


Наверх