Патенты автора Давлеткулов Раис Калимуллович (RU)

Изобретение относится к области металлообработки и может быть использовано для восстановления металлических изделий с поверхностными трещинами. Способ включает предварительную подготовку поверхности изделия и последующее воздействие на него импульсным магнитным полем, обеспечивающим микрорасплавление металла в области трещин. Перед микрорасплавляющим воздействием импульсного магнитного поля трещины заполняют металлическим порошком аналогичного материалу восстанавливаемого изделия состава. После заполнения трещин металлическим порошком сжимающим воздействием импульсного магнитного поля производят его запрессовку в трещины. Микрорасплавляющее воздействие импульсного магнитного поля обеспечивается вихревыми токами в поперечном к трещинам направлении при величине упомянутых вихревых токов от 80 до 180 кА. Изобретение обеспечивает заварку поверхностных трещин на металлическом изделии без перегрева его материала. 8 з.п. ф-лы, 1 табл., 1 ил.

Изобретение относится к области металлообработки и может быть использовано для восстановления металлических изделий с поверхностными трещинами. Перед микрорасплавляющим воздействием импульсного магнитного поля трещины заполняют металлическим порошком, аналогичного материалу восстанавливаемого изделия состава. На трещины накладывают металлическую пластину того же состава, что и состав материала восстанавливаемого изделия, и сжимающим воздействием импульсного магнитного поля деформируют пластину энергией по крайней мере одного магнитного импульса, обеспечивающего заполнение металла упомянутой пластины в трещины и запрессовку упомянутого порошка. Микрорасплавляющее воздействие импульсного магнитного поля обеспечивается вихревыми токами в поперечном к трещинам направлении при их значении от 80 кА до 200 кА. Изобретение обеспечивает заварку поверхностных трещин на металлическом изделии без перегрева его материала. 9 з.п. ф-лы, 1 ил., 1 табл.

Изобретение относится к области металлообработки и может быть использовано для восстановления металлических изделий с поверхностными трещинами. Способ включает предварительную подготовку поверхности изделия и последующее воздействие на него импульсным магнитным полем, обеспечивающим микрорасплавление металла в области трещин. Перед микрорасплавляющим воздействием импульсного магнитного поля на трещины накладывают металлическую пластину того же состава, что и состав материала изделия, и сжимающим воздействием импульсного магнитного поля деформируют пластину энергией по крайней мере одного магнитного импульса, обеспечивающего заполнение металла упомянутой пластины в трещины. В качестве предварительной подготовки поверхности изделия используют ультразвуковую промывку в растворителе. Микрорасплавляющее воздействие импульсного магнитного поля обеспечивается воздействием вихревых токов на трещины в поперечном к трещинам направлении при величине упомянутых вихревых токов от 80 кА до 200 кА. Изобретение обеспечивает заварку поверхностных трещин на металлических изделиях в виде трубопровода без перегрева его материала. 8 з.п. ф-лы, 1 табл., 1 ил.

Изобретение относится к технологии электрополирования поверхности деталей из металлов и сплавов и может быть использовано для обработки поверхностей лопаток турбомашин для повышения их эксплуатационных характеристик. Способ включает погружение детали в проводящую среду из гранул-анионитов, пропитанных раствором электролита, обеспечивающего ионный унос металла с поверхности детали с удалением микровыступов при подаче противоположного по знаку электрического потенциала на деталь и проводящую среду через введенный в среду внешний электрод. При этом внешний электрод выполнен в виде радиального лопастного колеса, который вращаясь, обеспечивает захват и перемещение гранул-анионитов относительно обрабатываемой поверхности детали. Установка содержит источники электрического питания, блок управления, рабочую емкость с гранулами-анионитами и внешним электродом, обеспечивающим электрический контакт с гранулами-анионитами, и по крайней мере один держатель обрабатываемой детали, выполненный с возможностью размещения детали в среде гранул-анионитов и перемещения гранул-анионитов относительно обрабатываемой поверхности. Технический результат: повышение качества и надежности обработки поверхности металлической детали за счет повышения однородности обработки ее поверхности, снижения вероятности появления дефектов. 2 н. и 8 з.п. ф-лы, 3 ил.

Изобретение относится к машиностроению и может быть использовано для восстановления размеров точного режущего инструмента, например плоских протяжек при одновременном их упрочнении. Способ включает пластическую деформацию протяжки, обеспечивающую увеличение высоты зубьев протяжки с компенсацией изношенных размеров, последующую размерную обработку зубьев, обеспечивающую восстановление их размеров и геометрии. При этом пластическую деформацию проводят у основания зубьев одновременно с магнитно-импульсной обработкой деформируемого участка, обеспечивающей повышение пластичности материала протяжки в момент его деформации, а также залечивание микротрещин в материале и его упрочнение. Магнитно-импульсную обработку проводят при режимах, обеспечивающих возникновение в материале протяжки вихревых токов величиной от 80 до 180 кА. Последующую размерную обработку упомянутых зубьев после деформации осуществляют либо шлифованием, либо электрохимическим методом. После размерной обработки рабочей части инструмента осуществляют его упрочняющую обработку методом ионной имплантации азотом. 8 з.п. ф-лы, 2 ил.

Изобретение относится к металлургии, в частности к способам химико-термической обработки деталей из легированных сталей, и может быть использовано в машиностроении для поверхностного упрочнения деталей машин, в том числе деталей, работающих в парах трения, зубчатых колес и роторов винтовых насосов и двигателей. Способ включает активацию поверхности детали перед азотированием, нагрев детали до температуры азотирования и выдержку детали при этой температуре до формирования необходимой толщины азотированного слоя. При этом активацию поверхности детали проводят в два этапа, на первом этапе активации осуществляют полирование детали в среде гранул, выполненных из анионитов, содержащих раствор электролита, перемещая деталь в среде гранул, обеспечивая контакт поверхности детали с гранулами. На деталь и на гранулы подают различный по знаку электрический потенциал в импульсном режиме со сменой полярности. Первый этап активации проводят до обеспечения шероховатости не ниже Ra= 0,08…0,12 мкм, а на втором этапе активации проводят ионно-имплантационную обработку поверхности детали ионами хрома при энергии ионов от 20 до 28 кэВ, дозе облучения от 1,0⋅1017 см-2 до 1,1⋅1017 см-2. Техническим результатом является повышение износостойкости азотированного слоя деталей из легированных сталей. 1 з.п. ф-лы, 1 табл., 2 ил.

Изобретение относится к технологии электрополирования внутренних поверхностей деталей из металлов и сплавов и может быть использовано для обработки полых деталей типа трубок для повышения их эксплуатационных характеристик. Способ включает размещение внутри трубки электрода не контактирующего с трубкой, заполнение и перемещение токопроводящей среды внутри трубки, подачу электрического потенциала на трубку и электрод и полирование внутренней поверхности трубки до получения заданной шероховатости. При этом в качестве электропроводящей среды используют гранулы из анионитов, пропитанных электролитом, осуществляют их перемещение методом пневмотранспортировки, создавая избыточное давление на одном из входов во внутреннюю полость трубки при обеспечении контакта между гранулами, а также между гранулами и внутренней поверхностью трубки и электродом. Устройство содержит держатель изделий, выполненный с возможностью обеспечения подачи электрического потенциала на все трубки и электроды, расположенные внутри трубок. Причем электрод выполнен в виде полой охлаждаемой трубки, а система подачи электролита в виде гранул-анионитов выполнена с возможностью реверсивной его пневмоподачи и снабжена компрессором, а бункер накопитель снабжен циклоном для отделения гранул от пневмопотока. Технический результат: повышение качества и надежности полирования внутренней поверхности деталей за счет повышения однородности обработки поверхностей, снижения вероятности появления дефектов и уменьшения шероховатости. 2 н. и 7 з.п. ф-лы, 2 ил.

Изобретение относится к машиностроению и может быть использовано для восстановления размеров точного режущего инструмента, например плоских протяжек при одновременном их упрочнении. Осуществляют пластическую деформацию протяжки, обеспечивающую увеличение высоты зубьев протяжки с компенсацией изношенных размеров, последующую размерную обработку зубьев, обеспечивающую восстановление их размеров и геометрии. При этом пластическую деформацию проводят у основания зубьев, а после пластической деформации протяжку подвергают магнитно-импульсной обработке, обеспечивающей залечивание микротрещин, образованных в результате деформации материала протяжки и его упрочнение. Магнитно-импульсную обработку проводят при режимах, обеспечивающих возникновение в материале протяжки вихревых токов величиной от 80 кА до 180 кА. Изобретение восстанавливает размерные и геометрические характеристики рабочей части изношенного режущего инструмента при одновременном повышении его износостойкости. 8 з.п. ф-лы, 2 ил., 1 пр.
Изобретение относится к электролитно-плазменной обработке металлических деталей и может быть использовано для полирования лопаток турбомашин из никелевых и титановых сплавов. Способ включает погружение детали в электролит, формирование вокруг обрабатываемой поверхности детали парогазовой оболочки и зажигание разряда между обрабатываемой деталью и электролитом путем подачи на деталь электрического потенциала и образования в парогазовой оболочке плазмы. В процессе электролитно-плазменного полирования вокруг обрабатываемой детали создают постоянное магнитное поле равномерной напряженности в диапазоне 100-300 кА/м по всей обрабатываемой поверхности, при этом обработку детали осуществляют в режиме скрещивания магнитного и электрического полей, причем на деталь подают электрический потенциал от 280 до 600 В. В результате повышается производительность обработки за счет концентрации заряженных частиц в области обрабатываемой поверхности. 4 з.п. ф-лы, 1 пр.
Изобретение относится к способам очистки сточных вод и может быть использовано в процессах очистки промышленных и бытовых сточных вод, в том числе содержащих нефтепродукты. Способ включает удаление загрязнений осаждением и флотацией с последующей финишной очисткой воды пропусканием ее через ионообменные смолы. При флотации производят эмульгирование очищаемой воды путем ее ультразвуковой обработки. В качестве ионообменных смол используют гранулы-катиониты, которые помещают в электроизолированный бункер, в периферийной части которого располагают по крайней мере один охватывающий рабочую зону финишной очистки электрод, подключенный к положительному полюсу источника электрического питания, а в центральной части упомянутой рабочей зоны очистки по крайней мере один электрод, подключенный к отрицательному полюсу источника электрического питания. Ультразвуковую обработку воды производят при частоте от 16-50 кГц, а в зону финишной очистки воды на электроды подают электрический потенциал от 12 до 36 В, причем используют гранулы-катиониты размерами от 1,3 до 2,5 мм. Изобретение обеспечивает повышение эффективности и производительности процесса очистки сточных вод. 3 з.п. ф-лы.

Изобретение относится к исследованиям механических свойств покрытий, а именно к способам определения прочности сцепления покрытия с основой, и может быть использовано для оценки прочности сцепления слоев в многослойном покрытии. Способ оценки прочности сцепления многослойного покрытия заключается в нанесении слоев испытуемого покрытия на образец в виде металлической пластины, выполнении в покрытии поперечного надреза до подложки и изгиба пластины с испытуемым покрытием при расположении надреза в области растяжения при изгибе пластины и оценке прочности сцепления по результатам разрушения покрытия, надрез выполняют в зоне максимальной деформации металлической пластины при изгибе, при этом до или после деформации приготавливают микрошлиф в плоскости, перпендикулярной линии надреза, и на микрошлифе или его фотографическом изображении определяют: точку О - точку пересечения биссектрисы угла изгиба образца α, проходящей через центр надреза О', с линией, перпендикулярной поверхности покрытия в точке А1 и проходящей через точку А1, проводят из точки О линию через точку А2 и определяют угол γ1 между этой линией ОА2 и биссектрисой ОО', затем проводят из точки О линию через точку А3 и определяют угол γmax между этой линией ОА3 и биссектрисой ОО', затем проводят из точки О линию через точку А4 и определяют угол γmin между этой линией ОА4 и биссектрисой ОО', где: α - угол изгиба образца; A1 - точка начала зоны деформации пластины; А2 - точка конца участка отслоения покрытия от основы; γ1 - угол отслоения покрытия от основы; А3 - точка конца участка максимального отслоения слоя покрытия от нижележащего слоя покрытия; γmax - угол максимального отслоения слоев покрытия; А4 - точка конца участка минимального отслоения слоя покрытия от нижележащего слоя покрытия; γmin - угол минимального отслоения слоев покрытия; а по значениям углов γ1, γmax, γmin судят о прочности сцепления между слоями и между покрытием и основой, причем чем больше значение углов γ1, γmax, γmin, тем меньше прочность сцепления. Технический результат - обеспечение количественно-качественной оценки прочности сцепления между покрытием и основой и между слоями многослойного покрытия. 3 з.п. ф-лы, 2 ил., 1 табл.
Изобретение относится к электролитно-плазменной обработке металлических деталей и может быть использовано для полирования лопаток турбомашин из никелевых и титановых сплавов. Способ включает погружение детали в электролит, формирование вокруг обрабатываемой поверхности детали парогазовой оболочки и зажигание разряда между обрабатываемой деталью и электролитом путем подачи на деталь электрического потенциала. В процессе обработки вокруг обрабатываемой детали обеспечивают постоянное магнитное поле равномерной напряженности в диапазоне 50-500 кА/м по всей обрабатываемой поверхности. В результате повышается производительность обработки за счет концентрации заряженных частиц в области обрабатываемой поверхности. 6 з.п. ф-лы, 1 пр.

Изобретение относится к электрополированию лопаток моноколеса и может быть использовано в турбомашиностроении при обработке лопаток моноколеса компрессоров газотурбинных двигателей и установок. Способ включает электрохимическое полирование лопаток моноколеса с последующим полированием в среде электропроводящих гранул, выполненных из анионитов, пропитанных раствором электролита, при этом гранулы приводят в вибрационное движение частотой от 50-400 Гц, подают на моноколесо и гранулы электрический потенциал и осуществляют полирование лопатки в среде гранул до получения заданной шероховатости поверхности. Причем гранулы приводят в возвратно-поступательное движение в направлении вдоль спинки и корыта лопатки, а моноколесо вращают относительно его продольной оси со скоростью, обеспечивающей полирование поверхности лопаток. В процессе полирования моноколесо совершает угловые колебательные движения с наклоном по обе стороны от вертикали до 45 угловых градуса. Устройство выполнено в виде контейнера, снабженного токоподводами, вибратором, устройством для закрепления и перемещения моноколеса с обеспечением углового колебательного движения с углом наклона продольной оси моноколеса до 45 угловых градуса по обе стороны от вертикали. Технический результат: повышение качества и однородности обработки поверхности моноколеса с лопатками. 2 н. и 8 з.п. ф-лы, 3 ил.

Изобретение относится к исследованиям механических свойств покрытий, а именно к способам оценки адгезионной прочности покрытия с основой. Способ заключается в нанесении слоев испытуемого покрытия на образец в виде металлической пластины, выполнении в покрытии поперечного надреза до подложки и изгибе пластины с испытуемым покрытием при расположении надреза в области растяжения при изгибе пластины и оценке прочности сцепления по результатам разрушения покрытия. При этом выполняют дополнительный надрез, причем надрезы располагают симметрично относительно оси симметрии изгиба образца, приготавливают шлиф в плоскости, перпендикулярный линии надреза, и на шлифе определяют: точку О - точку пересечения биссектрисы угла изгиба образца α, проходящей через центр изгиба образца О', с линией, перпендикулярной поверхности покрытия в точке A1 и проходящей через точку A1, проводят из точки О линию через точку А2 конца участка отслоения покрытия от основы и определяют угол γ1 отслоения покрытия от основы, затем проводят из точки О линию через точку А3 конца участка максимального отслоения слоя покрытия от нижележащего слоя покрытия и определяют угол γmax - угол максимального отслоения слоев покрытия, затем проводят из точки О линию через точку А4 конца минимальной величины участка отслоения слоя покрытия от нижележащего слоя покрытия и определяют угол γmin - угол минимального отслоения слоев покрытия. Технический результат - обеспечение количественно-качественной оценки адгезионной прочности между покрытием и основой и между слоями многослойного покрытия. 3 з.п. ф-лы, 2 ил., 1 табл.

Изобретение относится к сухому электрохимическому полированию лопаток турбомашин. Способ включает помещение лопатки в среду гранул, выполненных из анионитов, пропитанных раствором электролита, обеспечивающего электропроводность упомянутых гранул и ионный унос металла с удалением микровыступов с обрабатываемой поверхности лопатки и имеющих размеры, не превышающие минимальный размер поперечного сечения наименьшего из перфорационных отверстий. Размещают электрод во внутренней полости лопатки, щетины щетки плотно прижимают к внутренней поверхности полости лопатки, осуществляют контакт обрабатываемой поверхности лопатки с гранулами, прикладывают к основанию щетки, выполненной из магнитного материала, переменное магнитное поле, приводят щетку в возвратно-поступательное движение, осуществляют перемещение гранул через полость лопатки и ее перфорационные отверстия, при этом на электрод и лопатку подают противоположный по знаку электрический потенциал и проводят обработку внутренней полости лопатки и кромок перфорационных отверстий лопатки. Обеспечивается повышение качества и однородности обработки перфорационных отверстий при повышении производительности обработки. 9 з.п. ф-лы, 3 ил.

Изобретение относится к технологии электрополирования поверхности деталей из металлов и сплавов и может быть использовано для обработки поверхностей лопаток турбомашин для повышения их эксплуатационных характеристик. Способ включает погружение детали в проводящую среду и подачу противоположного по знаку электрического потенциала на деталь и проводящую среду. При этом электрополирование проводят в среде гранул, выполненных из анионитов, пропитанных раствором электролита, обеспечивающего электропроводность упомянутых гранул и ионный унос металла с поверхности детали с удалением с нее микровыступов. При полировании устанавливают щетки с щетинами из диэлектрического материала вокруг детали, осуществляют контакт щетин щетки с обрабатываемой поверхностью детали, обеспечивают контакт всей полируемой поверхности детали с упомянутыми гранулами и гранул между собой, приводят щетки и/или деталь во вращательное движение, подают на деталь и гранулы электрический потенциал, обеспечивающий ионный унос металла с поверхности обрабатываемой детали и ее полирование в среде упомянутых гранул до получения заданной шероховатости полируемой поверхности. 5 з.п. ф-лы, 4 ил.

Изобретение относится к технологии электрополирования и электрообработки деталей из легированных сталей на основе ионного переноса и может быть использовано для скругления кромок пластинчатых деталей, например торсионов несущих винтов вертолетов. Способ включает сборку торсионов в пакет с совмещением их контуров и обработку кромок в пакете. При этом сборку торсионов в пакет производят через плоские прокладки, повторяющие контур торсиона с отступлением от кромок на величину, обеспечивающую свободный доступ к обработке кромок торсионов, с наложением экранов, повторяющих конфигурацию и расположение прокладок на внешние поверхности крайних торсионов пакета. Пакет торсионов погружают в среду гранул, выполненных из анионитов, пропитанных раствором электролита, обеспечивающего электропроводность гранул и ионный унос металла. Гранулы приводят в вибрационное движение, обеспечивающее равномерное омывание кромок торсиона. Подают на торсион и гранулы электрический потенциал, обеспечивающий скругление кромок и получение заданной шероховатости поверхности. Устройство состоит из держателя пакета и средства для обработки кромок торсионов в среде гранул. Технический результат: повышение качества полирования и закругления кромок пластинчатого торсиона, а также повышение эксплуатационных характеристик торсионов при снижении трудоемкости процесса обработки. 2 н. и 8 з.п. ф-лы, 3 ил.
Изобретение относится к технологии электрополирования поверхности деталей из железохромоникелевых, титановых и никелевых сплавов и может быть использовано для повышения эксплуатационных характеристик лопаток турбомашин. Способ включает электролитно-плазменное полирование путем погружения детали в электролит, формирование вокруг обрабатываемой поверхности детали парогазовой оболочки и зажигание разряда между обрабатываемой деталью и электролитом подачей на обрабатываемую деталь электрического потенциала. При этом после проведения электролитно-плазменного полирования осуществляют полирование электропроводящими гранулами, причем обеспечивают контакт всей полируемой поверхности обрабатываемой части детали с электропроводящими гранулами, приводят электропроводящие гранулы в вибрационное движение, обеспечивающее равномерное омывание электропроводящими гранулами обрабатываемой части детали, подают на деталь положительный, а на электропроводящие гранулы отрицательный электрический потенциал и ведут обработку до получения заданной шероховатости. Технический результат: повышение качества и производительности обработки поверхности деталей сложной формы. 4 з.п. ф-лы.

Изобретение относится к технологии электрополирования поверхности деталей из легированных сталей и может быть использовано для повышения эксплуатационных характеристик лопаток турбомашин. Способ включает электрохимическую размерную обработку со снятием основного припуска и электрохимическое полирование в растворе жидкого электролита. Причем, после проведения электрохимического полирования вынимают лопатку из раствора электролита и погружают в контейнер с гранулами, выполненными из анионитов и пропитанными раствором электролита, обеспечивающего электропроводность гранул, приводят упомянутые гранулы в вибрационное движение частотой от 50 до 400 Гц и амплитудой от 1,0 до 6,0 мм, подают на лопатку и на гранулы различный по знаку электрический потенциал и осуществляют полирование лопатки в среде гранул. Устройство состоит из зоны обработки лопаток с ваннами для электролита и контейнерами для гранул, а также зоны коррекции электролита и гранул. Ванны и контейнеры выполнены с возможностью перемещения из зоны обработки лопаток в зону коррекции электролита. Технический результат: повышение качества и производительности обработки лопаток. 2 н. и 6 з.п. ф-лы, 2 ил.

Изобретение относится к электрополированию лопаток блиска и может быть использовано в турбомашиностроении. Способ включает электрохимическое полирование лопаток в среде гранул, выполненных из анионитов, пропитанных раствором электролита, обеспечивающего электропроводность гранул и ионный унос металла лопатки с удалением микровыступов с полируемой поверхности. Блиск погружают в контейнер с гранулами, осуществляют контакт с гранулами всей полируемой поверхности обрабатываемой лопатки, приводят гранулы в вибрационное движение, обеспечивающее равномерное омывание гранулами полируемой части лопатки блиска. Гранулы приводят в возвратно-поступательное движение в направлении вдоль спинки и корыта обрабатываемой лопатки блиска, наклоняя блиск под острым углом между направлением набегающего на обрабатываемую лопатку блиска потока гранул и поперечной плоскостью блиска. Устройство выполнено в виде металлического контейнера с открытым верхом, который снабжен токоподводами, вибратором, устройством для закрепления блиска и устройством для подъема и опускания блиска, его вращения, возвратно-поступательного перемещения и для изменения угла атаки между направлением набегающего на обрабатываемую лопатку блиска гранул и поперечной плоскостью блиска. Технический результат: повышение качества и однородности обработки поверхности лопаток блиска. 2 н. и 7 з.п. ф-лы, 4 ил.

Изобретение относится к области машиностроения и может быть использовано для обработки сухого электрохимического полирования перфорационных отверстий в полых лопатках турбомашин. Способ включает размещение в полости лопатки электрода, помещение лопатки в среду гранул, выполненных из анионитов, пропитанных раствором электролита и имеющих размеры, не превышающие минимальный размер поперечного сечения наименьшего из перфорационных отверстий. Подают на электрод и лопатку противоположный по знаку электрический потенциал и проводят обработку кромок перфорационных отверстий лопатки путем пропускания электрического тока через гранулы. При обработке приводят гранулы в вибрационное движение частотой 50-400 Гц, при этом осуществляют перемещение гранул через полость лопатки и ее перфорационные отверстия и проводят снятие дефектного слоя с внутренней поверхности перфорационных отверстий и скругление их кромок. Изобретение обеспечивает повышение качества и однородности обработки перфорационных отверстий в полых лопатках турбомашины, а также высокую производительность их обработки за счет интенсификации процесса и обеспечения равномерного взаимодействия обрабатывающей среды с поверхностями лопатки. 3 н. и 7 з.п. ф-лы, 3 ил., 1 пр.

Изобретение относится к области машиностроения и может быть использовано для обработки каналов, в частности внутренних поверхностей стволов артиллерийских орудий путем электрополирования. Способ включает перемещение электрода-инструмента по внутренней поверхности канала вдоль его оси. В качестве электрода-инструмента используют шнек с металлическим стержнем, винтовой элемент которого плотно прижимается к обрабатываемой поверхности детали и электроизолирован в местах контакта с нею. Обрабатываемую деталь со шнеком помещают в среду гранул, выполненных из анионитов, пропитанных раствором электролита, осуществляют контакт обрабатываемой поверхности детали с гранулами и приводят шнек во вращение, подают на обрабатываемую деталь и гранулы электрический потенциал, обеспечивающий ионный унос металла с обрабатываемой поверхности детали и ее полирование в среде упомянутых гранул и проводят электрополирование до получения заданной шероховатости внутренней поверхности канала детали. Изобретение обеспечивает повышение качества и однородности полирования внутренних поверхностей каналов металлических деталей. 2 н. и 8 з.п. ф-лы, 5 ил.

Изобретение относится к области машиностроения и может быть использовано для обработки отверстий малого диаметра, например перфорационных отверстий на лопатках из жаропрочных сплавов путем удаления дефектного слоя локальной электрохимической обработкой. Способ включает прожиг отверстий на пере лопатки электроэрозионным или лазерным методом с последующим удалением в образованных отверстиях дефектного поверхностного слоя. При этом поверхность пера лопатки покрывают экраном из диэлектрического материала с отверстиями, соответствующими по форме и расположению формируемым перфорационным отверстиям, с площадью сечения каждого отверстия экрана не менее площади сечения прошиваемого через отверстие экрана перфорационного отверстия, производят прожиг отверстий и, не снимая экрана с лопатки, электрохимической обработкой производят удаление в отверстиях дефектного поверхностного слоя, а после удаления дефектного поверхностного слоя удаляют экран. Техническим результатом является повышение качества и однородности обработки внутренних поверхностей перфорационных отверстий за счет обеспечения равномерного удаления в них дефектного поверхностного слоя электрохимической обработкой. 4 з.п. ф-лы, 2 ил., 1 пр.

Изобретение относится к изготовлению огнестойкого шланга. Осуществляют одевание на дорн оплетки из огнестойкого материала, заливку в цилиндрическую форму, соответствующую внешней поверхности шланга, пасты из кремнийорганического каучука. Осуществляют погружение в упомянутую форму с пастой дорна с оплеткой при совмещении продольной оси дорна с продольной осью упомянутой формы с образованием между дорном и внутренней поверхностью формы равномерного зазора, заполненного оплеткой и пастой, образующими стенки шланга. Обеспечивают закрытие формы, полимеризацию пасты и удаление шланга из формы и дорна из внутренней полости шланга. Используют длинномерный дорн из магнитного материала, размещают заполненную оплеткой и пастой закрытую форму с дорном в магнитном поле, компенсирующем прогиб длинномерного дорна от его собственного веса. Обеспечивают между дорном и внутренней поверхностью цилиндрической формы равномерный зазор. В результате обеспечивается разнотолщинность стенок длинномерного шланга. 7 з.п. ф-лы, 1 ил.

Изобретение относится к электрополированию лопаток блисков и может быть использовано в турбомашиностроении при обработке лопаток блиска компрессоров газотурбинных двигателей, для обеспечения необходимых физико-механических и эксплуатационных свойств деталей турбомашин, а также в качестве подготовительной операции перед ионно-имплантационным модифицированием поверхности детали и нанесением защитных ионно-плазменных покрытий. Способ включает заполнение электропроводящими гранулами рабочего контейнера, закрепление блиска на держателе, погружение блиска в электропроводящие гранулы, заполняющие рабочий контейнер и выполненные в виде пористых гранул из сульфированного сополимера стирол-дивинилбензола, поры которых заполнены электролитом без образования пленки электролита на внешней поверхности гранулы, подключение блиска к аноду, а гранул к катоду и полирование до получения заданной шероховатости поверхности лопаток блиска, при этом блиск погружают в электропроводящие гранулы частично на глубину, обеспечивающую полное погружение сегмента блиска с находящейся в его центре лопаткой, а электропроводящие гранулы приводят в непрерывное возвратно-поступательное движение амплитудой 22 кГц в направлении вдоль спинки и корыта лопатки, обеспечивающем равномерное омывание электропроводящими гранулами спинки и корыта лопатки, и вращают блиск относительно его оси со скоростью, обеспечивающей полирование поверхности лопаток блиска до получения заданной шероховатости по крайней мере за один цикл поворота блиска относительно его оси. Технический результат: повышение качества и однородности обработки поверхности деталей. 5 з.п. ф-лы, 2 ил.

Изобретение относится к технологии электрополирования деталей сложной формы и может быть использовано в турбомашиностроении при обработке лопаток блиска компрессоров газотурбинных двигателей для обеспечения необходимых физико-механических и эксплуатационных свойств деталей турбомашин. Способ включает закрепление блиска на держателе, погружении лопаток блиска в электропроводящие гранулы, заполняющие рабочий контейнер, подключении блиска к аноду, а электропроводящих гранул к катоду и полирование до получения заданной шероховатости поверхности лопаток блиска. В качестве рабочего контейнера используют эластичный трубчатый чехол из электроизоляционного материала с расположенными внутри электродом, одевают эластичный чехол на обрабатываемую лопатку заполняют эластичный чехол электропроводящими гранулами, приводят гранулы в вибрационное движение и возвратно-поступательном движение в направлении вдоль спинки и корыта лопатки, обеспечивающее равномерное омывание гранулами спинки и корыта лопатки. Рабочий контейнер выполнен из эластичного электроизоляционного материала в виде трубчатого чехла, размерами и формой, обеспечивающего охват всей обрабатываемой поверхности лопатки блиска и его размещения в межлопаточном пространстве. Технический результат: повышение надежности процесса полирования лопаток блисков, а также повышение качества и однородности обработки их поверхности. 2 н. и 7 з.п. ф-лы, 4 ил., 1 пр.

Изобретение относится к области турбо- и двигателестроения и может быть использовано в конструкциях газотурбинных двигателей и паровых турбин для уплотнения радиальных зазоров. Пальчиковое уплотнение содержит примыкающие друг к другу кольцевые детали, каждая из которых содержит равномерно расположенные по окружности пальчики, образованные путем выполнения щелей в кольцевых деталях, причем кольцевые детали установлены таким образом, чтобы пальчики каждой кольцевой детали перекрывали щели примыкающей к ней другой кольцевой детали. При этом щели в кольцевой детали выполнены в виде чередующихся друг с другом внутренних и внешних радиальных надрезов, причем внутренние и внешние надрезы выходят соответственно к внутренней и внешней поверхностям кольцевой детали, количество внутренних и внешних надрезов равно друг другу, при одинаковой глубине верхних надрезов и при одинаковой глубине нижних надрезов, при глубинах надрезов, не превышающих в радиальном направлении ширину кольцевой детали, и при равенстве шага t расположения надрезов, а взаимное перекрытие щелей каждой кольцевой детали пальчиками примыкающей к ней другой кольцевой детали обеспечивается за счет сдвига в тангенциальном направлении кольцевых деталей относительного друг друга. Изобретение обеспечивает повышение эффективности пальчикового уплотнения при значительных отклонениях ротора. 5 з.п. ф-лы, 3 ил.

Изобретение относится к области машиностроения и может быть использовано для обработки отверстий малого диаметра, например перфорационных отверстий в лопатках из жаропрочных сплавов путем удаления дефектного слоя электрохимической обработкой. Способ включает прожиг отверстий на пере лопатки электроэрозионным или лазерным методом с последующим электрохимическим удалением в образованных перфорационных отверстиях дефектного поверхностного слоя, перемещением электрода-инструмента по внутренней поверхности перфорационных отверстий, при подключении лопатки к аноду, а электрода-инструмента к катоду. В качестве электрода-инструмента используют пористые гранулы из диэлектрического материала, пропитанные электролитом, обеспечивающим электропроводность гранул без образования пленки электролита на их внешних поверхностях, имеющих размеры от 3 до 12 раз меньшие, чем поперечное сечение перфорационных отверстий. При этом гранулы размещают в контейнере, подключают их к катоду, поле чего обрабатываемую лопатку погружают в гранулы и обеспечивают перемещение гранул через перфорационные отверстия лопатки и осуществляют обработку их внутренней поверхности до полного снятия с поверхности перфорационных отверстий дефектного слоя. Изобретение обеспечивает повышение качества изготовления перфорационных отверстий в лопатках из жаропрочных сплавов и однородность обработки внутренних поверхностей упомянутых отверстий. 9 з.п. ф-лы, 2 ил., 1 пр.

Изобретение относится к области машиностроения и может быть использовано для обработки каналов путем электрохимического шлифования или полирования. Способ включает перемещение электрода-инструмента по внутренней поверхности канала, вдоль его оси при подключении детали к аноду, а электрода-инструмента - к катоду. В качестве электрода-инструмента используют выполненный из диэлектрического материала контейнер, заполненный электропроводящими гранулами, снабженный контактирующими с ними электродами и обеспечивающий контакт электропроводящих гранул между собой и с обрабатываемым участком внутренней поверхности канала детали. Перед началом обработки упомянутый контейнер вводят в обрабатываемый канал, обеспечивая контакт электропроводящих гранул между собой и с обрабатываемой поверхностью канала, а также с электродами контейнера. Подключают электропроводящие гранулы через электроды к катоду, а деталь - к аноду, и проводят процесс последовательной обработки внутренней поверхности канала, перемещая электрод-инструмент по подлежащей обработке поверхности канала до получения требуемой шероховатости поверхности. Изобретение обеспечивает повышение качества и однородности обработки внутренних поверхностей каналов металлических деталей. 2 н. и 7 з.п. ф-лы, 1 ил.

Изобретение относится к электролитно-плазменному полированию изделий из легированных сталей, тугоплавких и титановых сплавов и может быть использовано в турбомашиностроении при обработке лопаток блиска компрессоров газотурбинных двигателей для обеспечения необходимых эксплуатационных свойств деталей турбомашин. Способ включает погружение обрабатываемых лопаток блиска в электролит, находящийся в емкости, формирование вокруг обрабатываемой поверхности лопаток блиска парогазовой оболочки и зажигание разряда между обрабатываемой поверхностью лопаток блиска и электролитом. В качестве емкости для электролита используют емкость из электроизоляционного материала с расположенными в карманах стенки емкости электродами. Последовательно, после окончания полирования текущей лопатки, в емкость опускают следующую лопатку блиска и ведут обработку до окончания полирования всех лопаток блиска. Рабочая емкость выполнена с возможностью размещения в межлопаточном пространстве около обрабатываемой лопатки и обеспечивающей охват всей обрабатываемой поверхности лопатки блиска. Технический результат: повышение качества обработки лопатки блиска. 2 н. и 4 з.п. ф-лы, 5 ил., 3 пр.

Изобретение относится к электролитно-плазменному полированию изделий из легированных сталей, тугоплавких и титановых сплавов и может быть использовано в турбомашиностроении при обработке лопаток блиска компрессоров газотурбинных двигателей. Способ включает погружение обрабатываемых лопаток блиска в электролит, находящийся в емкости, формирование вокруг обрабатываемой поверхности лопаток блиска парогазовой оболочки и зажигание разряда между обрабатываемой поверхностью лопаток блиска и электролитом. В качестве емкости для электролита используют эластичный чехол из электроизоляционного материала с расположенными внутри него электродами, надевают эластичный чехол на обрабатываемую лопатку блиска, заполняют электролитом и ведут обработку до получения заданной шероховатости поверхности лопатки блиска. Эластичный чехол выполнен из эластичного неэлектропроводного материала и содержит во внутреннем рабочем объеме электроды, подключенные к катоду. Чехол выполнен в виде пакета, размерами и формой обеспечивающего охват всей обрабатываемой поверхности лопатки блиска. Технический результат: повышение качества и надежности процесса полирования блисков. 2 н. и 6 з.п. ф-лы, 3 ил., 3 пр.

Изобретение относится к области трубопроводного транспорта и, в частности, может быть использовано при ремонте магистрального трубопровода с заменой дефектного участка методом вырезки/врезки катушки. Способ замены дефектного участка трубопровода, включает обнаружение дефектного участка, оценку напряженно-деформированного состояния дефектного участка трубопровода, вырезку дефектного участка, центрирование труб, разметку, установку и сварку ремонтной «катушки» с трубами трубопровода. При оценке напряженно-деформированного состояния дефектного участка трубопровода определяют вид его упругой деформации и производят на дефектном участке следующие сквозные надрезы: при деформации сжатия продольные надрезы, относительно продольной оси трубопровода, при деформации растяжения и/или кручения надрезы в виде витков спирали относительно продольной оси трубопровода, при деформации изгиба поперечные надрезы со стороны действия растягивающих напряжений. Упомянутые надрезы производят до высвобождения упругой деформации дефектного участка трубопровода. 4 з.п. ф-лы, 6 ил.
Изобретение относится к металлургии, в частности к способам химико-термической обработки деталей из сплава на основе титана, и может быть использовано в машиностроении для поверхностного упрочнения деталей машин, в том числе деталей, работающих в парах трения. Способ химико-термической обработки детали из сплава на основе титана включает размещение детали в рабочей камере установки, активирование поверхности детали перед химико-термической обработкой, подачу в камеру рабочей насыщающей среды, нагрев детали до температур химико-термической обработки и выдержку при этих температурах до формирования необходимой толщины диффузионного слоя. Активирование поверхности детали перед химико-термической обработкой проводят с помощью ионно-имплантационной обработки поверхности детали при энергии ионов от 30 до 40 кэВ, дозой от 1,4⋅1017 см-2 до 1,8⋅1017 см-2, со скоростью набора дозы от 0,7⋅1015 с-1 до 1⋅1015 с-1, при этом в качестве имплантируемых ионов используют ионы следующих элементов: С, N, или их комбинации. В частных случаях осуществления изобретения химико-термическую обработку детали проводят ионно-плазменным азотированием или ионно-плазменной цементацией или ионно-плазменной нитроцементацией. Обеспечивается повышение производительности и качества процесса химико-термической обработки, а также повышение износостойкости деталей после химико-термической обработки. 2 з.п. ф-лы, 1 пр.
Изобретение относится к металлургии, в частности к способам химико-термической обработки деталей из сплава на основе никеля, и может быть использовано для изготовления деталей и узлов горячего тракта газотурбинных авиационных двигателей, стационарных газотурбинных установок и других изделий, работающих при высоких температурах. Способ химико-термической обработки детали из сплава на основе никеля включает размещение детали в рабочей камере установки, активирование поверхности детали перед химико-термической обработкой, подачу в камеру рабочей насыщающей среды, нагрев детали до температур химико-термической обработки и выдержку при этих температурах до формирования необходимой толщины диффузионного слоя. Активирование поверхности детали перед химико-термической обработкой проводят с помощью ионно-имплантационной обработки поверхности детали при энергии ионов от 35 до 50 кэВ, дозе облучения от 1,2·1017 см-2 до 1,6·1017 см-2, скорости набора дозы облучения от 0,6·1015 с-1 до 0,9·1015 с-1, при этом в качестве имплантируемых ионов используют ионы С, N, Cr, Y, Yb или их комбинации. В частных случаях осуществления изобретения химико-термическую обработку детали проводят ионно-плазменным азотированием, или ионно-плазменной цементацией, или ионно-плазменной нитроцементацией. Обеспечивается повышение производительности и качества процесса химико-термической обработки, а также повышение износостойкости деталей после химико-термической обработки. 2 з.п. ф-лы, 1 пр. .
Изобретение относится к металлургии, в частности к способам химико-термической обработки деталей из сплава на основе кобальта, и может быть использовано для изготовления деталей и узлов горячего тракта газотурбинных авиационных двигателей, стационарных газотурбинных установок и других изделий, работающих при высоких температурах. Способ химико-термической обработки детали из сплава на основе кобальта включает размещение детали в рабочей камере установки, активирование поверхности детали перед химико-термической обработкой, подачу в камеру рабочей насыщающей среды, нагрев детали до температур химико-термической обработки и выдержку при этих температурах до формирования необходимой толщины диффузионного слоя. Активирование поверхности детали перед химико-термической обработкой проводят с помощью ионно-имплантационной обработки поверхности детали при энергии ионов от 35 до 50 кэВ, дозе облучения от 1,2·1017 см-2 до 1,6·1017 см-2, скорости набора дозы облучения от 0,6·1015 с-1 до 0,9·1015 с-1 и при использовании в качестве имплантируемых ионов ионов следующих элементов: С, N, Cr, Y, Yb или их комбинации. В частных случаях осуществления изобретения химико-термическую обработку детали проводят ионно-плазменным азотированием или ионно-плазменной цементацией или ионно-плазменной нитроцементацией. Обеспечивается повышение производительности и качества процесса химико-термической обработки, а также повышение износостойкости деталей после химико-термической обработки. 2 з.п. ф-лы, 1 пр.
Изобретение относится к металлургии, в частности к способам химико-термической обработки деталей из титана, и может быть использовано в машиностроении для поверхностного упрочнения деталей машин, в том числе деталей, работающих в парах трения. Способ химико-термической обработки детали из титана включает размещение детали в рабочей камере установки, активирование поверхности детали перед химико-термической обработкой, подачу в камеру рабочей насыщающей среды, нагрев детали до температур химико-термической обработки и выдержку при этих температурах до формирования необходимой толщины диффузионного слоя. Активирование поверхности детали перед химико-термической обработкой проводят с помощью ионно-имплантационной обработки поверхности детали при энергии ионов от 30 до 40 кэВ, дозой от 1,4·1017 см-2 до 1,8·1017 см-2, со скоростью набора дозы от 0,7·1015 с-1 до 1·1015 с-1 и при этом в качестве имплантируемых ионов используют ионы С, N или их комбинации. В частных случаях осуществления изобретения химико-термическую обработку детали проводят ионно-плазменным азотированием, или ионно-плазменной цементацией, или ионно-плазменной нитроцементацией. Обеспечивается повышение производительности и качества процесса химико-термической обработки, а также повышение износостойкости деталей после химико-термической обработки. 2 з.п. ф-лы.

Изобретение относится к области охраны окружающей среды и может быть использовано при разливе нефти (нефтепродуктов) под ледяным покровом преимущественно арктических водоемов. Предложен способ сбора нефти или нефтепродукта из-под ледяного покрова водоема, включающий локализацию пятна нефти или нефтепродукта и последующее удаление нефти или нефтепродукта откачкой в нефтеприемник. При этом в область локализации пятна нефти или нефтепродукта под ледяной покров подают по крайней мере один понтон, накачивают его воздухом в количестве, достаточном для создания подъемной силы, достаточной для подъема и деформации ледяного покрова с образованием купола на участке локализации пятна нефти или нефтепродукта, обеспечивающего сбор нефти или нефтепродукта, находящегося между поверхностью воды и ледяным покровом. Предложено устройство для реализации способа. Результатом является повышение производительности сбора нефти от 1,8 до 2,6 раз и снижение трудоемкости в 4-6 раз. 2 н. и 22 з.п. ф-лы, 5 ил.

Способ сбора нефти или нефтепродукта из-под ледяного покрова водоема включает локализацию пятна нефти или нефтепродукта и последующее удаление нефти или нефтепродукта откачкой в нефтеприемник, в области локализации пятна нефти или нефтепродукта в ледяном покрове бурят скважину, погружают через нее в область пятна завихритель с откачным устройством, вращением завихрителя создают в воде подо льдом вихревую воронку, обеспечивающую сбор в нее нефти или нефтепродукта, и производят откачку нефти или нефтепродукта из вихревой воронки. Локализацию пятна нефти или нефтепродукта производят размещением под ледяным покровом надувного бонового заграждения путем его транспортировки управляемыми торпедами и/или подводными аппаратами или путем размещения его через пробуренные по периметру пятна нефти или нефтепродукта скважины. Под лед помещают боновые заграждения в ненадутом (спущенном) состоянии, а после размещения надувают их. Область, образованную боновым заграждением и ледяным покровом, на конечном этапе откачки нефти или нефтепродукта заполняют горячим воздухом. Технический результат - повышение производительности сбора. 5 з.п. ф-лы, 3 ил.

Изобретение может быть использовано при изготовлении полых, например, авиационных вентиляторных лопаток. На поверхность участков, не подвергаемых соединению при диффузионной сварке, наносят антиадгезионное покрытие. После диффузионной сварки пакета, собранного из заготовок корыта, спинки и внутреннего каркаса лопатки, осуществляют разрушение адгезионных связей путем приложения отрывающей нагрузки, обеспечивающей отслоение защитного покрытия за счет упругой деформации заготовки на упомянутых участках при воздействии магнитного и/или электрического поля. Разрушение адгезионных связей производят до или после придания упомянутой заготовке аэродинамического профиля. Затем нагревают полученную конструкционную заготовку до температуры сверхпластической формовки и подают в ее полости рабочую среду для создания статического и/или вибростатического давления, необходимого для сверхпластической формовки, до получения полого пера лопатки и формирования ребер жесткости. Способ обеспечивает повышение качества лопаток и надежности процесса их изготовления за счет минимизации влияния загрязнений при разрушении и отслоении антиадгезионного покрытия. 24 з.п. ф-лы, 4 ил., 1 пр.
Изобретение относится к металлургии, в частности к способам химико-термической обработки металлов и сплавов, и может быть использовано в машиностроении для поверхностного упрочнения деталей машин, в том числе деталей, работающих в парах трения, а также режущего инструмента и штамповой оснастки. Способ химико-термической обработки детали из легированной стали включает размещение детали в рабочей камере, активирование поверхности детали перед химико-термической обработкой, подачу в камеру рабочей насыщающей среды, нагрев детали до температуры химико-термической обработки и выдержку при этой температуре до формирования необходимой толщины диффузионного слоя. Активирование поверхности детали перед химико-термической обработкой проводят с помощью ионно-имплантационной обработки поверхности детали при энергии ионов от 25 до 30 кэВ, дозе облучения от 1,6·1017 см-2 до 2·1017 см-2, скорости набора дозы облучения от 0,7·1015 с-1 до 1·1015 с-1 и при использовании в качестве имплантируемых ионов следующих элементов: С, N или их комбинации. В частных случаях осуществления изобретения химико-термическую обработку детали проводят ионно-плазменным методом. В качестве ионно-плазменного метода используют ионно-плазменное азотирование, или ионно-плазменную цементацию, или ионно-плазменную нитроцементацию. Обеспечивается повышение производительности и качества процесса химико-термической обработки, а также повышение износостойкости деталей после нее. 2 з.п. ф-лы, 1 пр.

Изобретение относится к технике и технологии нанесения защитных ионно-плазменных покрытий и может быть применено в машиностроении, например, для защиты рабочих и направляющих лопаток турбомашин. Способ включает размещение деталей в вакуумной камере, приложение к деталям потенциала электрического смещения, ионную очистку поверхности деталей и нанесение на них покрытия электродуговым испарением материала катода. Катод выполнен в виде цилиндрической обечайки с магнитным фиксатором области катодных пятен. Фиксатор выполнен с возможностью обеспечения области образования катодных пятен в виде полосы, ориентированной вдоль продольной оси цилиндрической обечайки катода и перемещающейся по траектории, коаксиальной окружности цилиндрической обечайки катода с сохранением своей ориентации. Возвратно-поступательное перемещение области катодных пятен по упомянутой полосе осуществляют за счет переключения полярности противоположных торцов катода. В установке используют центральное расположение катода в вакуумной камере. В результате достигается равномерность покрытия. 2 н. и 16 з.п. ф-лы, 4 ил, 1 пр.

Изобретение относится к измерительной технике и может быть использовано для экспресс-определения физико-механических свойств твердых материалов, в частности для оценки степени упрочнения поверхностного слоя деталей после защитно-упрочняющей обработки

 


Наверх