Патенты автора Данилова Надежда Петровна (RU)

Изобретение относится к наземным испытаниям космических аппаратов (КА), корпус которых выполнен с боковыми гранями из сотопанелей (СП), содержащих аксиальные (вертикальные) и горизонтальные коллекторные тепловые трубы. На СП установлены тепловые эквиваленты или штатные приборы КА. В первом режиме в нижних зонах СП включают стендовые нагреватели с суммарным тепловыделением (ТВ), равным штатному ТВ приборов соответствующих СП. При этом приборы не включают. Во втором режиме увеличивают мощность нагревателей СП до двойного суммарного ТВ приборов этих СП. Одновременно задействуют стендовые охладители для поглощения ТВ стендовых нагревателей. Регулируя нагрузки нагревателей и охладителей, добиваются совпадения значений средних температур СП в обоих режимах. Затем включают установленные на СП приборы со штатным ТВ и одновременно снижают ТВ стендовых нагревателей до штатного ТВ приборов. Указанное управление подводом и отводом тепла от СП позволяет стабилизировать работу аксиальных тепловых труб в условиях гравитации. Технический результат заключается в обеспечении необходимой достоверности испытаний КА при одновременном снижении затрат на их проведение. 2 ил.

Изобретение относится к ракетно-авиационной технике, а более конкретно к обеспечению теплового режима в отсеках. При обеспечении теплового режима приборного отсека в летательном аппарате (ЛА) корпус отсека, включающий две оболочки, выполняют с внутренним расположением герметизирующей оболочки. В зазоре между внутренней герметизирующей оболочкой и аппаратурой отсека размещают чехол из нежесткого теплоизоляционного материала. На поверхности теплоизоляционного материала и герметизирующей оболочки, обращенных к аппаратуре, наносят покрытие с малой степенью черноты. В условиях наземной эксплуатации во внутреннем объеме герметизирующей оболочки предварительно путем наддува создают консервационное давление, которое сохраняется на начальной стадии полета ЛА. На высоте внутри отсека снижают давление газовой среды путем сброса газа в окружающую среду задействованием устройства для сообщения приборного отсека с окружающей атмосферой с последующим закрытием этого устройства после достижения внутри отсека необходимого давления для исключения конвективного теплообмена между герметизирующей оболочкой и газовой средой отсека. Достигается улучшение параметров термостатирования. 1 ил.

Изобретение относится к теплотехнике, в частности к системам обеспечения теплового режима на основе контурных тепловых труб. Шахтная установка для передачи тепла на большие расстояния при малых температурных перепадах содержит термоэлектрическую батарею и контурную тепловую трубу. Холодный спай термоэлектрической батареи сопряжен с охлаждаемым объектом, а коммутационная пластина горячего спая - с испарителем контурной тепловой трубы. В шахтной установке, расположенной в вертикальном шахтном сооружении, охлаждаемый объект с контактирующим холодным спаем термоэлектрической батареи размещен в верхней части шахтного сооружения с более высокой температурой, а конденсатор контурной тепловой трубы расположен в нижней части шахтного сооружения с пониженной температурой и находится в теплообмене излучением и конвекцией со стенками шахтного сооружения. Технический результат - создание надежного устройства с упрощенной конструкцией, работоспособного при любой ориентации в поле сил тяжести и способного передавать тепло на большие расстояния при малых температурных перепадах и небольших энергетических затратах. 1 з.п. ф-лы, 1 ил.

Изобретение относится к авиационно-ракетной технике и может быть использовано для обеспечения теплового режима приборных отсеков сверх- и гиперзвуковых летательных аппаратов. Способ заключается в охлаждении бортовой аппаратуры циркулирующим газом с помощью двухконтурной системы охлаждения. При этом газ охлаждают в испарительном контуре за счет испарения низкокипящего хладагента, пары которого отводят в атмосферу. В начале полета охлаждение аппаратуры приборного отсека осуществляют только вентиляцией в течение времени, определяемого в зависимости от температуры, тепловыделения и теплоемкости аппаратуры. Далее задействуют указанный испарительный контур, причем отвод паров низкокипящего хладагента в атмосферу осуществляют через герметизирующий элемент в виде мембранного клапана. Этот клапан разгерметизируется при давлении насыщенных паров кипения хладагента. Техническим результатом изобретения является улучшение термостабилизации бортовой аппаратуры, уменьшение массы и повышение надежности системы охлаждения. 2 ил.
Изобретение относится к наземной отработке систем терморегулирования аппаратуры изделий авиационной и ракетно-космической техники. Испытания проводят в термокамере в два этапа. На первом этапе подвергают натурный теплоизоляционный пакет приборного отсека внешнему тепловому нагружению, имитирующему полетное. Одновременно создают на внутренней поверхности пакета граничные условия теплообмена, соответствующие теплоотводу от оболочки корпуса внутрь приборного отсека. По измеренным температурам указанной внутренней поверхности получают график изменения температур корпуса приборного отсека по времени. На втором этапе нагревают корпус без теплоизоляции в соответствии с полученным графиком. Одновременно замеряют температуры газовой среды и аппаратуры приборного отсека, производящей тепловыделение в соответствии с полетной циклограммой. Техническим результатом изобретения является сокращение затрат на испытания, проводимые без использования специальных крупногабаритных стендов и камер, с имитацией аэродинамического потока. 1 з.п. ф-лы.

Изобретение относится к ракетной технике и может быть использовано в конструкции крылатой ракеты

Изобретение относится к разъемным соединениям пневмогидравлических систем и может быть использовано для стыковки приборных отсеков (ПО) различных изделий, например летательных аппаратов, с обслуживающими наземными установками

Изобретение относится к ракетной технике и может быть использовано в конструкциях ракет для разделяемых ступеней и составных частей

 


Наверх