Патенты автора Коржик Михаил Васильевич (BY)

Изобретение относится к области регистрации ионизирующих излучений. Сцинтилляционная композиция для регистрации нейтронов содержит сцинтиллятор, поглотитель нейтронов и связующее. Добавление атомов 6Li в состав связующего позволяет увеличить эффективность поглощения нейтронов, сократить потери энергии и среднюю длину пробега ядер гелия и трития между ядрами 6Li и зернами сцинтиллятора в композиции. При этом отношение количества атомов гадолиния Gd и 6Li может варьироваться в широких пределах, позволяя осуществлять регистрацию нейтронов преимущественно по реакции радиационного захвата (n, γ), либо по реакции поглощения нейтронов ядрами 6Li, сопровождающейся испусканием ядер гелия и трития. Технический результат – улучшение пространственного разрешения и производительности измерений при регистрации нейтронов. 5 табл., 2 пр., 2 ил.

Изобретение относится к способам регистрации реакторных антинейтрино сцинтилляционным методом. Сущность изобретения заключается в том, что регистрацию антинейтрино осуществляют по реакции обратного бета-распада на протонах, при котором в слоях сегментированного гадолиний-содержащего неорганического сцинтиллятора, чередующихся со слоями органического сцинтиллятора, регистрируют фотоны сцинтилляций от аннигиляции рождающихся в ходе реакции обратного бета-распада позитронов (мгновенный сигнал), а также фотоны сцинтилляций от каскада гамма-квантов, испущенных при поглощении нейтронов, возникших в ходе реакции обратного бета-распада (задержанный сигнал). Технический результат – возможность детектирования реакторных антинейтрино. 4 з.п. ф-лы, 1 табл., 3 пр., 17 ил.

Изобретение относится к способам получения керамических люминесцентных и сцинтилляционных материалов. Такие материалы находят применение в качестве сцинтилляторов для систем рентгеновской компьютерной томографии, досмотровой техники и др., а также в качестве люминофоров для систем твердотельного освещения. Заявленный способ позволяет получать наноструктурированные порошки и люминесцентную керамику на их основе, содержащую одновременно Gd, Ga, Се, Al и необязательно Y. Способ включает следующие последовательные стадии: приготовление водных растворов солей исходных компонентов с точно известными концентрациями, объединение этих растворов в необходимом количестве для обеспечения требуемого состава компонентов, приготовление раствора осадителя, приливание растворов исходных компонентов в раствор осадителя, отделение осадка, сушку, термообработку при температуре 800-1000°С, компактирование и спекание при температуре не менее 1500°С. Для соблюдения стехиометрии растворы исходных компонентов разделяют на 2 или более группы и проводят их осаждение раздельно, причём количество осадителя выбирают таким образом, чтобы обеспечить наиболее полное осаждение входящих в группу компонентов. Гадолиний и галлий входят в разные группы. Полученные осадки смешивают, проводят их совместную сушку, и затем - термообработку полученного продукта и все последующие стадии. Техническим результатом заявленного изобретения является возможность получения люминесцентной керамики на основе сложных оксидов со структурой граната точно заданного состава. 2 пр., 9 ил.

Изобретение относится к области техники детектирования ионизирующего излучения при помощи сцинтилляционных детекторов. Способ изготовления отражающих поверхностей для сцинтилляционных элементов, включающий стадию приготовления исходной смеси, состоящей из полимерной основы и 0,1-90 вес. % порошкообразного пигмента, а также последующую стадию формования отражающей поверхности, осуществляемую методом трехмерной печати, в результате которой исходная смесь преобразуется в изделие из композитного светоотражающего материала, форма и размер которого позволяют совмещать две и более поверхности указанного изделия с двумя и более поверхностями одного или более сцинтилляционного элемента. Технический результат – упрощение процесса сборки матриц сцинтилляционных элементов пиксельных детекторов, повышение светосбора детекторного модуля. 3 з.п. ф-лы, 6 ил., 1 табл.

Изобретение относится к технологии получения поликристаллических сцинтилляционных материалов, применяемых в различных областях науки и техники, важнейшими из которых являются: медицинские и промышленные томографы, системы таможенного контроля и контроля распространения радиоактивных материалов, приборы дозиметрического контроля, различные детекторы для научных исследований, применяемые в физике высоких энергий и астрофизике, оборудование для геофизических исследований для нефте- и газоразведки. Способ получения сцинтилляционного порошка состава (Gd,Y)3(Ga,Al)5O12:Ce включает приготовление водных растворов солей исходных компонентов - Gd, Y, Се, Ga, Al - с заданными концентрациями, смешение этих растворов в количестве, обеспечивающем требуемый состав компонентов в смесевом растворе, приготовление раствора щелочного осадителя, приливание смесевого раствора исходных компонентов в раствор щелочного осадителя, термообработку полученной реакционной смеси путем медленного упаривания при температуре до 100°С, термообработку на воздухе в открытой емкости при последовательном повышении температуры до 450°С, а затем до 600°С, с последующей термообработкой при температуре 1000-1600°С. Техническим результатом изобретения является возможность экспрессного получения сцинтилляционных порошков сложных оксидов со структурой граната, активированных церием с составом задаваемым обобщенной формулой (Gd,Y)3(Ga,Al)5O12:Ce, с точно заданным составом. Частицы полученного порошка обладают плотной микроструктурой, выглядят прозрачными при наблюдении в оптическом микроскопе и демонстрируют высокий световыход сцинтилляций, характерный для этого класса соединений. 6 ил., 1 табл., 1 пр.

Группа изобретений относится к области регистрации нейтронов сцинтилляционным методом с использованием неорганического сцинтилляционного материала. Сущность изобретений заключается в том, что способ регистрации нейтронов содержит этапы, на которых регистрируют фотоны сцинтилляций, образующиеся при попадании нейтронов в гамма-лучевой сцинтиллятор на основе неорганического материала, содержащего нейтронпоглощающие компоненты, и определяют характеристики нейтронного излучения, при этом используют неорганический сцинтилляционный материал, содержащий атомы гадолиния, фотоны сцинтилляций от гамма-квантов регистрируют в энергетическом диапазоне 40-1300 кэВ и проводят сравнительный анализ интенсивности линий и/или групп линий в измеренном спектре излученных гамма-квантов в не менее чем двух энергетических диапазонах и по результатам данного анализа делают вывод о величине и спектральных характеристиках регистрируемого излучения нейтронов. Технический результат – расширение энергетического диапазона и повышение чувствительности детектора нейтронов. 2 н. и 8 з.п. ф-лы, 9 ил., 1 табл.

Изобретение относится к фотолюминофорам, предназначенным для преобразования излучения синих светодиодов в желто-красную область спектра с целью получения результирующего белого света, в частности к легированному церием люминофору на основе иттрий-алюминиевого граната, используемому в двухкомпонентных светодиодных источниках освещения

Изобретение относится к сцинтилляционным материалам, а именно к неорганическим кристаллическим сцинтилляторам, и может быть использовано в технике детектирования ионизирующих излучений для медицинской диагностики, ядерной геофизики, неразрушающего контроля

Изобретение относится к сцинтилляционным материалам, а именно к кристаллическим сцинтилляторам, и может быть использовано в технике детектирования ионизирующих излучений для медицинской диагностики, ядерной геофизики, неразрушающего контроля и оценки качества продуктов питания

Изобретение относится к способам получения кристаллов, а именно к способу получения монокристаллов лютеций-иттриевого алюмината, и может быть использовано при изготовлении сцинтилляционных элементов, применяемых в детекторах ионизирующих излучений в медицинской диагностирующей аппаратуре

Изобретение относится к способам получения кристаллов, а именно к способу получения монокристаллов вольфрамата свинца, и может быть использовано при изготовлении сцинтилляционных элементов, применяемых в детекторах ионизирующих излучений высоких энергий, работающих в условиях высоких дозовых нагрузок в трактах регистрации, требующих высокого временного разрешения

 


Наверх