Патенты автора Мурашкин Максим Юрьевич (RU)

Изобретение относится к области цветной металлургии и электротехники и может быть использовано для производства изделий электротехнического назначения, таких как токопроводящие элементы в виде катанки, проволок, пластин, шин, кабелей (в том числе бортовой проводки транспортных средств), а также проводов воздушных линий электропередачи. В предлагаемом изобретении композитный высокопрочный термостойкий провод содержит сердечник из алюминиевого сплава системы Al-Zr с электропроводностью не менее 58% IACS и оболочку из высокопрочного алюминиевого сплава с пределом прочности не менее 365 МПа, содержащего легирующие компоненты медь (Cu) и марганец (Mn) при соотношении, в мас.%: 0.4-2.0 Cu; 0.7-2.0 Mn или магний (Mg) и цирконий (Zr) при соотношении, в мас.%: 0.4-1.5 Mg; 0.1-0.4 Zr, причем площадь поперечного сечения оболочки составляет 70-90% от площади сечения провода. Использование данного композитного провода дает возможность повысить надежность и срок службы электротехнических изделий и электросетей, а также снизить их стоимость. Это позволяет отнести заявляемое изобретение к импортозамещающим технологиям. 1 ил.

Изобретение относится к области металлургии легких сплавов, в частности к сплавам на основе алюминия, и может быть использовано при получении проволоки из алюминиево-кальциевого сплава, в том числе диаметром менее 0,3 мм. Способ получения проволоки из алюминиево-кальциевого сплава включает получение расплава на основе алюминия, содержащего, мас.%: кальций 0,8-1,8, цирконий 0,3-0,7, железо 0,1-0,64, кремний 0,05-0,4, алюминий - остальное, получение литой заготовки диаметром от 8 до 12 мм путем кристаллизации расплава в электромагнитном кристаллизаторе, деформацию литой заготовки путем холодного волочения и стабилизирующий отжиг полученной проволоки при температуре 420-460°С в течение 1-10 часов. Кроме того, диаметр проволоки составляет менее 3,1 мм, в частности менее 0,3 мм. Обеспечивается получение термостойкой проволоки из алюминиево-кальциевого сплава со следующими характеристиками: плотность менее 2,7 г/см3, высокая деформационная технологичность, после 1-часового нагрева при 450°С: предел прочности при разрыве (σВ) - не менее 180 МПа, условный предел текучести (σ0.2) - не менее 170 МПа, относительное удлинение после разрыва (δ) - не менее 8%, электропроводность - не менее 54 % IACS. 2 з.п. ф-лы, 6 ил., 3 табл., 2 пр.

Изобретение относится к области металлургии, в частности к деформируемым материалам на основе алюминия, и может быть использовано при получении проволоки, предназначенной для работы в широком диапазоне температур, до 400°С. Способ получения проволоки из алюминиевого сплава включает получение расплава на основе алюминия, содержащего марганец, медь и цирконий, при температуре, превышающей температуру ликвидуса, получение литой заготовки путем кристаллизации расплава, получение проволоки путем деформации литой заготовки, промежуточный и окончательный отжиги проволоки, при этом в расплав вводят, мас.%: медь от 3,0 до 4,0, марганец от 2,4 до 3,0, цирконий от 0,4 до 0,6, литую заготовку в виде прутка диаметром от 8 до 12 мм получают кристаллизацией расплава со скоростью охлаждения не менее 1000°С/с, деформацию литой заготовки проводят холодным волочением, проволоку подвергают промежуточному отжигу при температуре 300-350°С в течение 2-6 часов и окончательному отжигу при температуре 360-410°С в течение 1-10 часов. Изобретение направлено на получение проволоки из алюминиевого сплава, обеспечивающего достижение следующего комплекса физико-механических свойств после 3-х часового нагрева при 400°С: временное сопротивление превышает 360 МПа, предел текучести - 330 МПа, относительное удлинение - 5%, удельная электропроводность - более 44% IACS. 2 з.п. ф-лы, 2 пр., 3 табл., 4 ил.

Изобретение относится к области цветной металлургии и электротехники, а именно к способам термомеханической обработки (ТМО) Al-Mg-Si сплавов, используемых для производства изделий электротехнического назначения, таких как токопроводящие элементы в виде катанки, проволоки, пластин, шин, кабелей, а также проводов воздушных линий электропередачи. Способ термомеханической обработки проводниковых сплавов системы Al-Mg-Si включает последовательно отжиг при 520-560°С, закалку в воду, искусственное старение и деформацию, причем искусственное старение проводят со временем выдержки от 24 до 300 часов в температурном интервале 170-210°С, а деформацию осуществляют при комнатной температуре методами волочения или прокатки с суммарной степенью деформации 80-95%. По второму варианту деформацию осуществляют путем предварительной обработки методом интенсивной пластической деформации в интервале гомологических температур 0.3-0.4 Тпл, где Тпл – температура плавления сплава, до значений истинной накопленной деформации (е) 1≤е≤2. Техническим результатом изобретения является повышение механической прочности при сохранении высоких значений электропроводности сплавов. 2 н. и 2 з.п. ф-лы, 2 пр., 2 ил.

Изобретение относится к цветной металлургии, а именно к области получения и обработки ультрамелкозернистых алюминиевых сплавов, и может быть использовано для изготовления высокопрочных изделий в условиях сверхпластичности методами изотермической экструзии, объемной или листовой штамповки, а также формовки. Ультрамелкозернистый алюминиевый сплав серии 7000 системы Al-Zn-Mg и Al-Zn-Mg-Cu характеризуется структурой, имеющей средний размер зерна не более 500 нм, при этом не менее 60% зерен имеют большеугловые границы, разориентированные относительно соседних зерен на углы 15 град и более, на которых расположены зернограничные сегрегации, образованные атомами основных легирующих элементов Zn, Mg, Cu или хотя бы одним из них, и частицы упрочняющей фазы η-MgZn2 размером 10-20 нм, при этом зерна состоят из алюминиевой матрицы, содержащей равномерно распределенные в объеме зерен нанокластеры, образованные атомами легирующих элементов Zn, Mg, Cu или хотя бы одним из них, с размером 2-5 нм, и частицы упрочняющей фазы η-MgZn2 размером 10-20 нм. Способ получения изделия из ультрамелкозернистого алюминиевого сплава серии 7000 системы Al-Zn-Mg и Al-Zn-Mg-Cu включает получение заготовки, отжиг заготовки при 460-490 °С, закалку в воду, интенсивную пластическую деформацию при температуре не выше 200 °С с суммарной истинной накопленной деформацией е≥4 и формообразующую сверхпластическую деформацию при температуре не выше 250 °С, скоростях деформации 10-2-10-5 с-1 со значением предельной деформации не менее 300%. Изобретение позволяет повысить уровень механической прочности алюминиевых сплавов до и после формообразующей обработки в условиях сверхпластичности и изготавливать из них высокопрочные изделия методами экструзии, объемной или листовой штамповки, а также формовки. 2 н. и 3 з.п. ф-лы, 4 ил., 1 пр.

Изобретение относится к области цветной металлургии и электротехники, в частности к сплавам на основе алюминия, и может быть использовано при производстве изделий электротехнического назначения, таких как проводники круглого и квадратного сечения, токопроводящие элементы в виде проволоки, пластин и шин, провода воздушных линий электропередач. Термостойкий проводниковый ультрамелкозернистый алюминиевый сплав содержит, мас. %: магний 0,2-0,8, цирконий 0,2-0,5, примеси, в том числе железо, кремний, марганец, хром, ванадий, не более 0,2, алюминий - остальное, при этом сплав имеет микроструктуру со средним размером зерна не более 1 мкм и наноразмерными частицами метастабильной фазы Al3Zr с кристаллической решеткой L12, которые равномерно распределены по объему зерен и имеют сферическую форму с размером не более 25 нм. Способ получения сплава включает отжиг заготовки в интервале температур 300-450°С продолжительностью от 30 до 350 часов и деформацию методом интенсивной пластической деформации при давлении 0,1-6,0 ГПа, в интервале гомологических температур 0,3-0,5 Тпл до значения истинной накопленной деформации е≥4. Изобретение направлено на повышение механической прочности, электропроводности и термостойкости алюминиевого сплава. 2 н. и 4 з.п. ф-лы, 2 ил., 2 табл., 2 пр.

Использование: для рентгенофазового анализа нанофаз в алюминиевых сплавах. Сущность изобретения заключается в том, что из алюминиевого сплава изготавливают испытуемую фольгу, которую подвергают рентгеновскому излучению, и регистрируют рентгенограмму, по которой идентифицируют и количественно определяют содержащиеся в испытуемой фольге нанофазы, при этом регистрацию рентгенограммы проводят в режиме на просвет с использованием параллельного пучка, по которой определяют пики нанофаз и по ним идентифицируют и количественно определяют содержащиеся в испытуемой фольге нанофазы с объемной долей менее 1%. Технический результат: обеспечение возможности идентификации и количественного определения нанофаз с объемной долей менее 1%, присутствующих в исследуемом образце алюминиевого сплава. 1 з.п. ф-лы, 2 табл., 2 ил.

Изобретение относится к области цветной металлургии и электротехники, в частности к материалам на основе алюминия, и может быть использовано при получении изделий электротехнического назначения: проводников круглого и квадратного сечения, проводов линий электропередач и токопроводящих элементов, работающих при повышенных температурах и механических нагрузках. Проводниковый ультрамелкозернистый алюминиевый сплав содержит по крайней мере один легирующий компонент, выбранный из группы редкоземельных металлов, железо и кремний, при этом редкоземельные элементы выбраны из группы, содержащей La, Ce, Nd, Pr, при следующем содержании компонентов, мас. %: по крайней мере один легирующий компонент, выбранный из группы La, Се, Nd, Pr 7,0-9,0, железо 0,05-0,1, кремний 0,05-0,1, алюминий - остальное, при этом сплав имеет структуру со средним размером зерна не более 400 нм и частицами эвтектической фазы Al11RE3, которые равномерно распределены по объему зерен и имеют сферическую форму с размером не более 50 нм, а межчастичное расстояние составляет не более 150 нм. Способ получения сплава включает интенсивную пластическую деформацию с истинной накопленной степенью деформации е≥4 при приложении давления 0.5-6.0 ГПа в интервале гомологических температур 0.3-0.5Тпл, и отжиг в температурном интервале 280-400°C продолжительностью не менее 1 часа. Техническим результатом является повышение механической прочности и термостойкости при удовлетворительной электрической проводимости в сплаве. 2 н. и 1 з.п. ф-лы, 1 пр., 1 табл., 2 ил.

Изобретение может быть использовано в устройствах дозирования топлива. Поршень для устройства дозирования топлива, изготовленный из алюминиевого сплава, содержит упрочненную интенсивной пластической деформацией головку (1) с ультрамелкозернистой структурой материала. Торец головки поршня имеет центральную антикавитационную область (4) с рыхлой структурой, полученной лазерной обработкой, углубленную по дуге окружности на 3-5 мм. Диаметр антикавитационной области (4) меньше диаметра головки (1) и образует по краям торца высокопрочное кольцо (3) шириной 2-5 мм. Технический результат заключается в снижении вероятности появления кавитации. 2 ил.

Изобретение относится к обработке металлов давлением и может быть использовано для получения интенсивной пластической деформации (ИПД) заготовки. Способ включает осадку и последующее кручение заготовки с обеспечением деформации сдвига. Деформирование заготовки проводят на бойках Бриджмена с приложением удельного давления 3-6 ГПа. Затем производят вращение подвижного бойка относительно своей оси со скоростью 0,02-1,5 об/мин. В процессе вращения бойка осуществляют циклическое изменение удельного давления на 10-20% от текущего значения с частотой 0,1-1,5 от установленной скорости вращения бойка. Цикличное приложение нагрузки при ИПД кручением обеспечивает однородную микроструктуру и повышает прочность и микротвердость материала заготовки. 3 з.п. ф-лы, 5 ил., 1 табл.

Изобретение относится к области получения алюминиевых сплавов и может быть использовано для изготовления изделий электротехнического назначения

 


Наверх