Патенты автора Пягай Игорь Николаевич (RU)

Изобретение относится к композитным материалам на углеродной основе, применяющимся в электрометаллургии в составе электродов, в частности, в электролитическом производстве алюминия и может быть использовано при изготовлении катодных блоков и набивной массы для монтажа катодного устройства алюминиевого электролизёра. Композитный углеродсодержащий материал получают смешением углеродистых компонентов с металлсодержащим и борсодержащим компонентами, с последующим формованием и термообработкой. Углеродистые компоненты смешивают с оксидом тугоплавкого металла в количестве от 8 до 18 мас. % и оксидом бора в количестве до 28 мас. % с последующим электрохимическим восстановлением оксидов до боридов и карбидов металла в объеме катода действующего электролизера. Изобретение обеспечивает создание углеродсодержащего материала с повышенной эрозионной стойкостью и улучшенным смачиванием. 1 з.п. ф-лы, 2 табл.
Изобретение относится к методам химического модифицирования природных глинистых материалов с целью получения сорбента для очистки водных растворов от ионов тяжелых металлов, биогенных веществ, микроэлементов, детергентов и других экологически вредных веществ. Представлен способ получения сапонитового сорбента, включающий обработку глинистых пород химическими реагентами с получением пластичной массы, глинистую породу обрабатывают кислым реагентом, после чего ее нейтрализуют щелочным реагентом с одновременным внесением пептизирующих добавок, причем в качестве глинистых пород используют сапонитовую глинисто-пластичную массу, в качестве кислого реагента используют серную кислоту, в качестве щелочного реагента используют цемент, в качестве пептизирующей добавки используют хлорид железа (III), далее проводят формовку сорбента в экструдере с получением гранул длиной от 0,5 до 1 см, гранулы выгружают и сушат при комнатной температуре, затем гранулы сорбента помещают в муфельную печь и проводят термическую обработку при температуре от 500 до 600°С с получением глинистого сапонитового сорбента. Изобретение обеспечивает повышение адсорбционной активности по отношению к катионам тяжёлых металлов. 1 табл., 6 пр.
Изобретение относится к гидрометаллургической переработке минерального сырья и к защите окружающей среды и может быть использовано при комплексной переработке фосфогипса. Сначала фосфогипс промывают водой 1-2 ч при температуре от 60 до 70°С. Полученную суспензию фильтруют с получением раствора серной и фосфорной кислот и отмытого фосфогипса. Раствор серной и фосфорной кислот направляют в цикл производства фосфорной кислоты. Отмытый фосфогипс отправляют на конверсию раствором карбоната натрия с последующим отделением осадка от раствора. Твёрдая фаза представляет собой целевой продукт - обескисленный карбонат кальция, а жидкая фаза - раствор сульфата натрия, который отправляют на выпаривание с получением натриевой соли серной кислоты. Предварительная отмывка фосфогипса позволяет уменьшить содержание остаточных кислот в целевом продукте и увеличить его выход. 1 табл., 17 пр.
Изобретение относится к производству биотоплива, конкретно к способу очистки эфиров жирных кислот от щелочного гомогенного катализатора, включающему выпаривание остаточного количества одноатомного спирта, содержащегося в количестве от 10 до 20 масс.%, из эфиров жирных кислот, промывку водой остатка от выпаривания и выделение сложных эфиров жирных кислот сушкой, характеризующемуся тем, что выпаривание смеси эфиров жирных кислот С16-С22 проводят при нормальном атмосферном давлении и температуре от 55 до 70°С в течение от 4 до 6 часов, барботируют углекислым газом с расходом газа от 20 до 40 мл/сек при температуре от 25 до 50°С в течение от 5 до 10 минут, затем промывают дистиллированной водой при температуре от 35 до 40°С в течение не менее 2 часов со скоростью подачи от 1,7 до 5,4 мл/мин с получением очищенной смеси эфиров жирных кислот с содержанием натрия, калия или их смеси не более 5 ppm и промывочной воды, содержащей карбонаты и гидрокарбонаты щелочных металлов, которую подвергают сорбционной очистке и возвращают в процесс. Техническим результатом изобретения является повышение степени очистки эфиров жирных кислот от щелочного катализатора. 3 табл., 10 пр.
Изобретение относится к нефтегазохимической промышленности, в частности к способу получения игольчатого кокса процессом замедленного коксования, для производства электродов, используемых в сталеплавильных печах. Способ включает нагрев высокоароматизированного сырья, подачу его в камеру коксования при температуре коксования от 495 до 505ºС и коксование с получением кокса и дистиллятов коксования, которые подают в нижнюю часть ректификационной колонны на фракционирование, с получением газа, фракции бензина, фракций легкого и тяжелого газойлей коксования, полученный сырой игольчатый кокс после выгрузки направляют на прокалку в инертной среде в течение от 1 до 2 ч, с получением прокаленного игольчатого кокса. Причем в качестве сырья используют тяжелую смолу пиролиза газобензинового сырья, которую предварительно деасфальтизируют осадителем, в качестве которого используют предельные углеводороды до содержания в ней асфальтенов не более 3 мас.%. При этом осадитель регенерируют из деасфальтизата путем фракционирования и отправляют на повторное использование, а очищенную от осадителя фракцию – деасфальтизированную тяжелую смолу пиролиза смешивают с полистиролом в количестве до 20 мас.%. Далее коксование проводят при давлении от 0,45 до 0,50 МПа, а прокаливание проводят при температуре от 1400 до 1450ºС. Техническим результатом заявленного изобретения является получение игольчатого кокса из нефтехимического техногенного сырья с улучшенной организацией микроструктуры. 4 табл., 7 пр.

Изобретение может быть использовано в устройствах для стендовых испытаний двигателей внутреннего сгорания. Автоматизированный комплекс мониторинга качества топлива двигателя внутреннего сгорания транспортных средств содержит испытуемый двигатель (1), датчик (2) частоты вращения коленчатого вала, датчик (3) распределительного вала, датчик (4) давления газа в цилиндре двигателя, датчик (5) положения дроссельной заслонки, датчик (6) детонации, датчик (7) угловых отметок коленчатого вала, датчик (8) концентрации кислорода и датчик (9) массового расхода воздуха. В состав комплекса также входят газоанализатор (10) вредных выбросов продуктов сгорания, блок (11) управления двигателем, электронный блок (12) управления, аналого-цифровой преобразователь (13), персональный компьютер (14) с монитором, нагружающее устройство (15), блок (16) управления, модель (17) электронного блока управления, интерфейс (18) связи, имитатор (19) ключа зажигания, генератор-имитатор (20), коммутатор (21), блок (22) задания режимов, устройство (23) управления работой, устройство (24) сопряжения блока управления двигателя и электронного блока управления и устройство (25) сопряжения электронного блока управления и устройства управления работой. Дополнительно установлены датчик (34) температуры окружающего воздуха, выход которого соединен со входом электронного блока (12) управления, и топливный бак (26). Внутри топливного бака (26) выполнено отверстие, в которое закреплен топливный насос (28). В топливном насосе (28) установлены датчик (27) оценки качества топлива, датчик (30) температуры топлива, выходы которых соединены с соответствующими входами электронного блока (33) оценки результатов датчиков топлива, и нагревательный элемент (29). Вход нагревательного элемента (29) соединен со входом электронного блока (12) управления. В топливном баке (26) выпилены отверстия, в которые установлены датчик (31) уровня топлива с емкостным элементом и датчик (32) спектрального анализа качества топлива, выходы которых соединены с соответствующими входами электронного блока (33) оценки результатов датчиков топлива. Технический результат заключается в повышении точности данных о качестве топлива в реальном времени. 1 ил.
Изобретение относится к способу получения углеродного пористого материала, который осуществляется следующим образом: исходное сырье, в качестве которого используют гудрон, асфальт, тяжелую сланцевую смолу, тяжелый газойль каталитического крекинга, подвергают замедленному коксованию при температуре от 495 до 505 °С и избыточном давлении от 1,5 до 3,5 ати с получением нефтяного кокса, затем полученный нефтяной кокс измельчают и смешивают его с порошком гидроксида калия в массовом соотношении 3:1, карбонизацию смеси проводят при температуре от 745 до 755 °С, далее промывают раствором соляной кислоты концентрацией от 0,8 до 1,2 М, затем водой до нейтрального значения рН промывных вод, после этого сушат при температуре от 105 до 120 °С с получением углеродного пористого материала с удельной площадью поверхности от 800 до 2300 м2/г. 4 пр., 1 табл.

Изобретение относится к способу получения аморфного диоксида кремния из отходов переработки кремнефтористоводородной кислоты и производства фторида алюминия, включающему обработку кремнегеля раствором минеральных кислот, отделение, промывку и сушку, причем кремнегель сушат при температуре от 100 до 120°С в течение от 2 до 4 часов, затем проводят предварительную обработку кремнегеля раствором серной кислоты с концентрацией от 0,1 % мас. до 0,5 % мас. в массовом соотношении ж:т от 5:1 до 20:1, затем нагревают до температуры от 25 до 100°С при непрерывном перемешивании в течение от 0,1 до 2 часов, с получением твердой фазы – аморфного диоксида кремния, который сушат на воздухе в течение не менее 48 часов при температуре от 20 до 25°С, затем разделяют на две фракции с размером частиц от 2 до 50 мкм и от 50 до 150 мкм и жидкой фазы, которую отправляют на утилизацию. 2 з.п. ф-лы, 4 табл., 4 ил., 4 пр.
Изобретение относится к области бурения скважин. Технический результат - получение термической стабильности бурового раствора, уменьшение фильтрационных потерь, улучшение реологических свойств, использование отходов. Буровой раствор включает сапонитовый глинистый шлам с концентрацией твердых веществ от 80 до 100 г/л, содержащий сапонит от 30 до 75 мас.%, и сульфат глыбу натриевую при следующем соотношении компонентов, мас.%: сапонит 8,20-10; сульфат глыба натриевая 0,27-0,94; вода - остальное. 1 табл., 7 пр.

Изобретение относится к способу получения каркасных Al2O3-SiO2 систем, пригодных для использования в процессах газоочистки, нефте- и газопереработки. Описан способ получения каркасных структур на основе SiO2-Al2O3, включающий приготовление пасты путем смешения порошка гидроксида алюминия со структурой псевдобемита и аморфного диоксида кремния, полученного из кремнегеля, с водой и азотной кислотой, формовку пасты через фильеры, сушку гранул и термообработку гранул, отличающийся тем, что кремнегель предварительно сушат при температуре от 100 до 120°С в течение от 2 до 4 часов, направляют в реактор с мешалкой, куда приливают раствор серной кислоты концентрацией 0,5 % масс., полученную пульпу фильтруют с получением твердой фазы и жидкой фазы, включающей маточный раствор и промывные воды, которую отправляют на утилизацию, а твердую фазу отправляют на сушку на воздухе при температуре от 20 до 25°С в течение от 24 до 48 часов и при температуре от 60 до 80°С в течение 12 часов с получением аморфного диоксида кремния, который классифицируют с отбором мелкой фракции от 0,5 до 50 мкм, крупную фракцию отправляют на измельчение, затем смешивают с первоначальной мелкой фракцией, после чего весь полученный продукт направляют на смешение с порошком гидроксида алюминия, водой и жидкофазным пептизатором с образованием пластичной твердообразной пасты, далее проводят экструзионную формовку с получением экструдата с поперечным сечением в форме круга диаметром от 2,0 до 5,0 мм, который нарезают по длине до требуемого размера, сушку проводят при комнатной температуре в течение от 36 до 48 часов, полученные гранулы термообрабатывают при температуре от 550 до 1150°С в течение от 3 до 5 часов. Техническим результатом является получение гранулированных носителей катализаторов и сорбентов с широким диапазоном содержания в них диоксида кремния от 20 до 85 % масс. и с улучшенными прочностными свойствами. 2 ил., 6 табл., 6 пр.
Изобретение относится к гидрометаллургии и технологии редких элементов и может быть использовано при переработке циркониевых концентратов и цирконийсодержащего сырья и полупродуктов, в том числе отходов глиноземного производства. Предлагается способ извлечения циркония из кислых водных цирконийсодержащих растворов осаждением путем введения источника фторид-иона при нагревании с последующим охлаждением до комнатной температуры. В качестве исходного цирконийсодержащего раствора используют раствор с концентрацией серной кислоты 10-300 г/л. В качестве источника фторид-иона используют смесь фторида калия или натрия и фтористоводородной кислоты при соотношении K(Na):HF=0,5÷1,5:1,0; при этом смесь вводят в количестве 10÷30 мл/1 г Zr при температуре 40-60°С и после охлаждения выдерживают в течение 22-24 часов. Способ обеспечивает возможность извлечения циркония из растворов с низким содержанием циркония при высоком проценте извлечения. 4 пр.
Изобретение относится к области гидрометаллургии и может быть использовано в способе для извлечения и концентрирования иттрия из водных растворов. Способ извлечения иттрия из водных солянокислых растворов включает экстракцию смесью органической кислоты и керосина, при этом в качестве органической кислоты используют ди-2-этил-гексил фосфорную кислоту при соотношении экстракционной смеси и солянокислого раствора, равном 1:1÷3,0. Экстракцию ведут в течение 15-30 минут. Затем проводят реэкстрацию с использованием в качестве реэкстрагента серной кислоты в количестве 180-200 г/дм с добавлением хлорида натрия в количестве 5-10 г/дм3 или источника фторид-иона в количестве 50-150 г/дм3 в пересчете на фторид-ион. В качестве источника фторид-иона используют HF, NH4F, KF. Техническим результатом является упрощение процесса и повышение извлечения иттрия. 1 з.п. ф-лы, 1 пр.
Изобретение относится к металлургии цветных металлов, а именно к получению оксида скандия из красного шлама производства глинозема

Изобретение относится к цветной металлургии, а именно к извлечению оксида скандия из бедного скандиевого концентрата

 


Наверх