Патенты автора БЮЛЕР Гуннар (DE)

Изобретение относится к новому содержащему марганец (Mn) фосфату типа (MnxMety)3(PО4)2·3H2О, причем x+y=1, соотношение Mn:(Mn+Met)=х:(х+у) составляет ≥0,15 и Met представляет собой один или несколько металлов, выбранных из Fe, Со, Ni, Sc, Ti, V, Cr, Cu, Zn, Be, Mg, Ca, Sr, Ba, Al, Zr, Hf, Re, Ru, La, Ce, Pr, Nd, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb и Lu. При этом фосфат в дифрактограмме порошкового рентгеноструктурного анализа имеет пики при 10,96±0,05, 12,78±0,17, 14,96±0,13, 17,34±0,15, 18,98±0,18, 21,75±0,21, 22,07±0,11, 22,97±0,10, 25,93±0,25, 26,95±0,30, 27,56±0,10, 29,19±0,12, 29,84±0,21, 30,27±0,12, 34,86±0,21, 35,00±0,20, 35,33±0,30, 35,58±0,10, 35,73±0,12, 42,79±0,45, 43,37±0,45, 44,70±0,15 и 44,93±0,20 градусов 2θ, на основе CuKα-излучения. Фосфаты пригодны для получения катодных материалов для литий-ионных батарей, в частности таких, из которых могут быть изготовлены катодные материалы с высокими плотностями аккумулирования энергии. Также описан способ их получения, который является сравнительно энергосберегающим и простым в исполнении и с помощью которого могут быть получены фосфаты с высокой чистотой. 5 н. и 16 з.п. ф-лы, 9 ил., 1 табл., 20 пр.

Изобретение относится к монофосфатам или смешанным фосфатам металлов типа (M1, M2, M3,...Mx)3(PO4)2⋅aH2O, где 0≤a≤9, и способу их получения. При этом (M1, M2, M3,...Mx) представляют собой металл в монофосфатах металлов или несколько металлов в смешанных фосфатах металлов и металлы выбирают из Mn, Fe, Co, Ni, Sc, Ti, V, Cr, Cu, Zn, Be, Mg, Ca, Sr, Ba, Al, Zr, Hf, Re, Ru, La, Ce, Pr, Nd, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb и Lu с условием, что по меньшей мере один металл в фосфате выбирают из Mn, Fe, Co и Ni, причем фосфат содержит не более чем 10 различных металлов M1, М2, М3,…Мх. Полученные фосфаты применяют для получения литированного (содержащего Li) катодного материала для Li-ионных аккумуляторов. Предложенным способом можно получить фосфаты с высокой чистотой. 6 н. и 11 з.п. ф-лы, 8 ил., 1 табл., 20 пр.

Изобретение относится к питательным композициям для биологических систем, таких как люди, животные, растения и микроорганизмы. Питательная композиция содержит по меньшей мере один смешанный фосфат металлов типа (M1 М2 М3 … Mx)3(PO4)2⋅аН2О, где 0≤а≤9, где (M1, М2, М3 … Mx) по меньшей мере 2 разных металлов смешанного фосфата металлов и они выбраны из группы, включающей Na, K, Mg, Са, Cr, Мо, W, Mn, Fe, Со, Ni, Cu, Zn и В, при условии, что по меньшей мере один из металлов в фосфате выбран из группы, включающей Mn, Fe, Со и Ni, где этот по меньшей мере один фосфат имеет пластинчатую морфологию первичных кристаллитов. При этом композицию получают путем приготовления водного раствора (I), который содержит по меньшей мере один или большее количество металлов Mn, Fe, Со и/или Ni в виде двухвалентных катионов, путем введения оксидных соединений металла(II), металла(III) и/или металла(IV) или смесей, или их соединений, содержащих смешанные состояния окисления, выбранных из группы, включающей гидроксиды, оксиды, оксигидроксиды, гидраты оксидов, карбонаты и гидроксикарбонаты по меньшей мере одного из металлов Mn, Fe, Со и/или Ni вместе с элементарными формами или сплавами по меньшей мере одного из металлов Mn, Fe, Со и/или Ni, в водную среду, содержащую фосфорную кислоту, и реакцию оксидных соединений металлов с элементарными формами или сплавами металлов с образованием двухвалентных ионов металлов. Далее осуществляют отделение всех твердых веществ, содержащихся в водном растворе фосфорной кислоты (I). Если смешанный фосфат металлов, в дополнение к металлам, введенным в водный раствор (I), содержит другие металлы, выбранные из группы, включающей (M1, М2, М3 … Mx), проводят дополнительное добавление к водному раствору (I) по меньшей мере одного соединения по меньшей мере одного из металлов (M1, М2, М3 … Мх) в виде водного раствора или в виде твердого вещества в форме соли. При этом по меньшей мере одно соединение предпочтительно выбрано из группы, включающей гидроксиды, оксиды, оксигидроксиды, гидраты оксидов, карбонаты, гидроксикарбонаты, карбоксилаты, сульфаты, хлориды или нитраты металлов. Далее осуществляют приготовление начального загрузочного раствора (II), обладающего значением рН от 5 до 8, полученного из водного раствора фосфорной кислоты путем нейтрализации водным раствором гидроксида щелочного металла или полученного из водного раствора одного или большего количества фосфатов щелочных металлов. Затем проводят дозирование водного раствора (I) в начальный загрузочный раствор (II) и одновременно дозирование в щелочной водный раствор гидроксида щелочного металла, так что значение рН полученной реакционной смеси поддерживается в диапазоне от 5 до 8. Далее осажденный фосфат типа (M1 М2 М3 … Мх)3(PO4)2⋅aH2O отделяют от раствора реакционной смеси. Изобретение позволяет получить питательную композицию, обладающую улучшенной биодоступностью. 4 н. и 10 з.п. ф-лы, 8 ил., 1 табл., 20 пр.

Группа изобретений может быть использована в производстве катодов литий-ионных аккумуляторов. Способ получения композита из ортофосфата железа(III) общей формулы FePO4·nH2O, где n≤2,5, и углерода включает диспергирование источника элементарного углерода в водном фосфорнокислом растворе, содержащем ионы Fe2+. При добавлении окислителя к полученной дисперсии из водного раствора осаждают и отделяют композит из ортофосфата железа(III) и углерода. В качестве источника элементарного углерода используют графит, расширенный графит, сажу различных типов, углеродные нанотрубки, фуллерены, графен, стеклоуглерод, углеродные волокна, активный уголь и их смеси, а в качестве окислителя предпочтительно используют пероксид водорода. Полученный композит применяют для получения LiFePO4, который используют в качестве материала катода для литий-ионных аккумуляторов. Изобретения обеспечивают простой и экономичный способ получения композита с высоким выходом композита, а также повышение электрической проводимости композита при минимально возможном содержании углерода. 5 н. и 9 з.п. ф-лы, 6 ил., 1 табл., 4 пр.

Изобретение относится к неорганическим материалам

 


Наверх