Патенты автора Корнев Роман Алексеевич (RU)

Изобретение относится к химической технологии получения поликристаллического кремния водородным восстановлением трихлорсилана водородом на кремниевые стержни-основы в безотходном режиме. Способ включает приготовление исходной парогазовой смеси в испарителе SiHCl3 1 барботированием водорода через слой трихлорсилана с мольным отношением H2:SiHCl3 = (3,0-3,5):1 с последующей ее подачей в реактор восстановления 2, где осуществляют осаждение поликристаллического кремния на нагретых до 1100-1150°C кремниевых стержнях, подачу отходящей из реактора восстановления 2 парогазовой смеси, состоящей из водорода, тетрахлорида кремния, трихлорсилана и хлористого водорода, в реактор-утилизатор 3, в котором при температуре 315-350°C осуществляют отделение хлористого водорода от отходящей из реактора восстановления 2 парогазовой смеси с получением смеси водорода, трихлорсилана и тетрахлорида кремния в соотношении SiHCl3/SiCl4 = 50%/50%, далее полученную смесь направляют в установку мембранного разделения 4 для отделения водорода на полимерных мембранах при температуре нагрева до 100°C и перепаде давлений, равном 8 атм, который возвращают в испаритель SiHCl3 1, а смесь трихлорсилана и тетрахлорида кремния подвергают конденсации 5 и ректификации 6, после чего трихлорсилан возвращают в испаритель SiHCl3 1, а тетрахлорид кремния направляют в испаритель SiCl4 7, в котором осуществляют барботирование водорода через слой тетрахлорида кремния с образованием парогазовой смеси с мольным соотношением H2:SiCl4 = (3,0-6,5):1, которую далее подают в плазмохимический реактор 8 для синтеза трихлорсилана, откуда парогазовую смесь, состоящую из водорода, тетрахлорида кремния, трихлорсилана и хлористого водорода, направляют в реактор-утилизатор 3 для отделения хлористого водорода. Таким образом, все компоненты используют в производстве без образования отходов или выбросов в атмосферу. В результате снижаются энергозатраты, повышается качество кремния, экологическая безопасность, снижается расход реагентов на единицу продукции. 2 з.п. ф-лы, 1 ил., 1 пр.

Изобретение относится к получению поликристаллического карбида бора. Карбид бора получают плазмохимическим синтезом в высокочастотном разряде в реакторе, содержащем электроды, выполненные в виде подложек для осаждения карбида бора. Синтез проводят при мощности разряда 500 Вт в плазме атмосферного давления при подаче в реактор потоков водорода, фторида бора и метана. Соотношение потоков H2:BF3 составляет 2,6, соотношение потоков BF3:CH4 составляет 5,5. Предложенный способ позволяет получить в непрерывном режиме изотопные модификации поликристаллического карбида бора. 1 з.п. ф-лы, 1 табл.

Изобретение относится к получению нанодисперсного порошка молибдена. Способ включает восстановление гексафторида молибдена водородом в реакторе под воздействием сверхвысокочастотного разряда. Реактор заполняют газовой смесью, состоящей из гексафторида молибдена и водорода, мольная доля которого составляет не менее трех четвертей от общего объема газовой смеси, и герметизируют. В качестве сверхвысокочастотного разряда используют неравновесный сверхвысокочастотный разряд поверхностного типа в импульсном периодическом режиме. Обеспечивается получение однородного нанодисперсного порошка молибдена. 3 з.п. ф-лы, 1 табл., 3 пр.
Изобретение относится к технологии получения изотопно-обогащенного германия и может быть использовано для производства полупроводниковых приборов, детекторов ядерно-физических превращений, в медико-биологических исследованиях материалов

 


Наверх