Патенты автора Иванова Ольга Сергеевна (RU)

Изобретение относится к области медицины, в частности к области разработки терапевтических и косметических композиций и их применения для доставки неорганических частиц, конкретно наночастиц диоксида церия, через кожу. Предложена композиция для трансдермальной доставки наночастиц, содержащая диметилсульфоксид в качестве пенетратора и нанокристаллический диоксид церия в качестве наночастиц, связанный со стабилизатором, представляющим собой полисахарид, при следующем соотношении компонентов, мас. %: наночастицы диоксида церия – 1,7; стабилизатор – 8,3; диметилсульфоксид - 90. В качестве стабилизатора могут быть использованы низкомолекулярные полиглюканы. Изобретение обеспечивает максимальное проникновение наночастиц диоксида церия через кожный барьер на глубину до 20 мкм. 1 з.п. ф-лы, 4 ил., 4 пр.

Изобретение относится к области неорганической химии и может быть использовано при получении необратимого люминесцентного индикатора температуры. Сначала растворяют диоксид церия и оксид тербия(III,IV) в концентрированной ортофосфорной кислоте. Мольное соотношение Се : Tb при этом составляет 20:1-5:1, а концентрация церия в церийфосфатном растворе - 0,01-0,8 М. К полученному церийфосфатному раствору добавляют дистиллированную воду так, чтобы объемное соотношение церийфосфатный раствор : дистиллированная вода составляло от 1:3 до 1:8. Сформировавшийся гель очищают от избытка ортофосфорной кислоты, высушивают и получают ксерогель аморфного ортофосфата церия(IV), содержащего тербий, например, в виде тонкослойного материала. После отжига при температурах около 700°С полученный продукт обладает зеленой люминесценцией при УФ-облучении и может быть использован в качестве индикатора температуры как сам по себе, так и в составах, содержащих другие компоненты. Изобретение позволяет расширить арсенал технических средств, предназначенных для визуальной регистрации температуры перегрева деталей или оборудования при высоких температурах. 1 з.п. ф-лы, 4 ил., 8 пр.

Изобретение относится к охлаждению жидкостных ракетных двигателей. Предлагается камера ЖРД, работающая с дожиганием генераторного газа, содержащая смесительную головку со смесительными элементами, корпус камеры с расположенным на нем коллектором подвода горючего, газовода тороидальной формы в районе минимального сечения и неохлаждаемый металлический насадок, согласно изложению между каналами охлаждения в корпусе камеры перед коллектором подвода охладителя выполнены отверстия, соединяющие полость газовода с внутренней полостью корпуса камеры. Изобретение обеспечивает повышение энергетических характеристик, ресурс работы и улучшение массовых характеристик. 2 ил.

Изобретение относится к жидкостным ракетным двигателям. Смесительная головка камеры жидкостного ракетного двигателя содержит наружное днище, двухкомпонентные форсунки, закрепленные в корпусе и огневом днище, запальное устройство и подводные магистрали горючего и окислителя, при этом периферийная часть состоит из двух колец, соединенных между собой в торцевой части стенкой с отверстиями, образующих кольцевую газовую полость, в стенках которых выполнены маленькие отверстия 0,5÷1,2 мм на расстоянии между собой от 2 до 5 калибров, соединяющие ее через полость коллектора с автономной магистралью подвода горючего, а центральная часть содержит двухкомпонентные форсунки, закрепленные в корпусе и огневом днище, полости которых соединены через полости коллекторов с основными магистралями подвода окислителя и горючего, и в центре их расположена магистраль запального устройства. Изобретение обеспечивает повышение надежности и энергетических характеристик. 2 ил.

Изобретение относится к жидкостным ракетным двигателям. Камера жидкостного ракетного двигателя, работающего по безгазогенераторной схеме, содержащая корпус камеры, смесительную головку, состоящую из периферийной и центральной частей, наружное днище, магистрали подвода горючего и окислителя и расположенный в полости камеры теплообменник, согласно изложению, каналы охлаждения в теплообменнике выполнены с двухсторонним расположением, на наружной и (или) внутренней поверхности теплообменника выполнены интенсификаторы теплообмена, теплообменник хотя бы в одной плоскости сечения состоит из двух или более сегментов, коллектор входа и (или) выхода теплообменника, закрепленного на наружном днище и пилонах корпуса головки, расположены вне полости камеры. Изобретение обеспечивает увеличение тяги двигателя. 3 н.п. ф-лы, 3 ил.

Изобретение относится к ракетной технике, а именно к жидкостному ракетному двигателю (ЖРД), работающему по схеме с дожиганием генераторного газа. Жидкостный ракетный двигатель содержит газовод и опору крепления, при этом опора крепления установлена на газоводе, выполнена охлаждаемой и содержит каналы охлаждения. Опора крепления состоит не менее чем из двух частей, содержит магистрали перепуска охладителя между своими частями, а части опоры соединены фланцевым соединением. Изобретение обеспечивает выполнение плотной компоновки двигателя, а также расположение ТНА выше критического сечения камеры сгорания. 3 з.п. ф-лы, 5 ил.

Изобретение относится к жидкостным ракетным двигателям. Щелевая смесительная головка камеры жидкостного ракетного двигателя, содержащая наружное днище, корпус с установленными в нем кольцами с трактом охлаждения и отверстиями для подачи жидкого компонента, зазоры между которыми образуют кольцевые каналы подвода газообразного компонента, пусковую форсунку горючего, согласно изобретению кольца с каналами охлаждения смещены друг относительно друга в сторону камеры на расстояние от 0,4 части до ширины кольцевого газового канала, образуя общую величину смещения примерно 0,1÷0,3 величины диаметра цилиндрической части камеры. Изобретение обеспечивает устранение высокочастотных колебаний давления в камере. 1 ил.

Изобретение относится к жидкостным ракетным двигателям. Смесительная головка камеры ЖРД, содержащая наружное днище, корпус, огневое днище, двухкомпонентные форсунки, закрепленные в корпусе и огневом днище, кольцевую периферийную часть, магистрали подачи жидкого и газообразного компонента, согласно изобретению в корпусе выполнено три ряда отверстий, один ряд, выполненный в цилиндрической части корпуса, и второй ряд отверстий, выполненный в полостной стенке корпуса, соединяют полость, коллектора жидкого компонента с кольцевой периферийной частью, третий ряд отверстий, выполненный в плоской стенке корпуса, соединяет полость камеры жидкого компонента с жидкой полостью центральной части, а между отверстиями третьего ряда в плоской части корпуса выполнены дозирующие отверстия для подачи газообразного компонента в кольцевую периферийную часть и полости двухкомпонентных форсунок и периферийная кольцевая полость через полости коллекторов соединена с магистралями подвода жидкого и газообразного компонентов топлива. Изобретение обеспечивает повышение надежности и снижение трудоемкости изготовления. 3 ил.

Изобретение относится к области химической технологии, а именно к способам получения водных коллоидных растворов золей наночастиц соединений переходных металлов, а именно коллоидных растворов триоксида вольфрама, которые могут быть использованы для получения защитных покрытий, катализаторов, красителей, композитов и применяться в других областях, где есть потребность в таких растворах. Предложен cпособ получения беспримесных водных коллоидных растворов кристаллических наночастиц триоксида вольфрама, включающий отжиг паравольфрамата аммония при температурах 550÷800°С в течение 10÷120 мин в открытой емкости, охлаждение продукта отжига до 20÷25°С, приготовление водной суспензии продукта отжига в дистиллированной воде, ультразвуковую обработку полученной водной суспензии в течение 1÷3 ч. Технический результат состоит в получение водных коллоидных растворов кристаллических наночастиц WO3 высокой степени чистоты. 4 ил., 3 пр.

Изобретение относится к способам сорбции Th(IV) из водных растворов. Иммобилизацию тория(IV) осуществляют на сорбенте на основе гидроортофосфата церия(IV). Церийсодержащий фосфорнокислый раствор с концентрацией церия(IV) 0,01÷0,8 М смешивают с водным раствором, содержащим ионы тория, выдерживают образующуюся суспензию гидроортофосфата церия(IV) с адсорбированным торием при перемешивании, отделяют сформировавшийся осадок от жидкости и подвергают его отжигу при 1000÷1200°С. Способ обеспечивает эффективную сорбцию тория(IV) из водных радиоактивных растворов. 2 ил., 1 табл., 8 пр.

Изобретение может быть использовано в химической промышленности, биохимии, медицине. Для получения стабильных водных коллоидных растворов наночастиц диоксида церия готовят водный раствор гексанитроцерата(IV) аммония, тщательно перемешивая до его полного растворения. Проводят гидротермальную обработку раствора при температуре 80-200°C в течение 0,4-50 ч. Отделяют центрифугированием осадок наночастиц диоксида церия от маточного раствора, содержащего NH4NO3 и HNO3. Наночастицы CeO2 редиспергируют в дистиллированной воде. Полученный коллоидный раствор добавляют к водному раствору стабилизатора. В качестве стабилизатора используют нетоксичные органические гидроксильные соединения, выбранные из ряда: декстран, мальтодекстрин, цитрат аммония. Мольное соотношение CeO2 : стабилизатор равно 1:(2-5). В случае использования в качестве стабилизаторов декстрана и мальтодекстрина расчет производится на количество вещества мономера. Изобретение позволяет получать водные коллоидные растворы CeO2, стабильные в широком диапазоне значений рН. 3 з.п. ф-лы, 2 ил., 4 пр.

Изобретение относится к технологии производства наноматериалов для получения оксидных топливных элементов, тонких покрытий, пленок, обладающих высокой ионной проводимостью. Способ включает приготовление водного раствора солей церия и гадолиния, в котором суммарная концентрация редкоземельных элементов составляет 0,005÷0,02 моля на литр воды, а мольное соотношение Ce:Gd составляет от 19:1 до 4:1, добавление к полученному раствору анионообменной смолы в OH-форме до достижения pH 9.0÷10.0, отделение сформировавшегося коллоидного раствора от анионообменной смолы фильтрованием, гидротермальную обработку при 120÷210°С в течение 1,5÷4 ч и охлаждение до комнатной температуры. Полученный неустойчивый золь нанокристаллического диоксида церия, допированного гадолинием, дополнительно стабилизируют солью многоосновной кислоты путем добавления многоосновной кислоты (лимонной или полиакриловой) с мольным соотношением редкоземельных элементов к кислоте, равным 1:1÷4, и последующим медленным по каплям добавлением водного раствора аммиака до достижения pH 7÷8. Изобретение позволяет получать агрегативно-устойчивые водные золи со средним диаметром частиц около 4 нм, обладающих высокой морфологической однородностью, сохраняющие свои свойства в течение продолжительного времени. 4 з.п. ф-лы, 4 ил., 4 пр.

Изобретение относится к способу получения покрытого стабилизирующей оболочкой нанокристаллического диоксида церия, который характеризуется антиоксидантной активностью

 


Наверх