Патенты автора Казаков Сергей Алексеевич (RU)

Изобретение относится к средствам для анализа многокомпонентных газовых сред, содержащих различные газы и летучие органические соединения, и может применяться, например, для анализа выдыхаемого человеком воздуха с целью диагностики заболеваний или для анализа воздуха жилых и производственных помещений. Сущность: заявлен способ анализа многокомпонентных газовых сред, согласно которому очистку газовой камеры осуществляют путем прокачки нулевого газа через пневматическую магистраль для рециркуляции пробы, подачу анализируемой среды в газовую камеру осуществляют с помощью устройства форсированного ввода пробы, герметично соединяемого с входным отверстием газовой камеры, после чего непрерывно измеряют сопротивления всех газовых датчиков сначала при начальной температуре, затем ступенчато изменяют температуры полупроводниковых газовых датчиков, измеряют и регистрируют установившиеся значения сопротивлений каждого полупроводникового газового датчика при каждом из этих значений температуры, измеряют и регистрируют также параметры влажности, температуры среды и концентрации кислорода с помощью соответствующих датчиков, а анализ наличия и концентрации газообразных веществ в исследуемой среде производят путем математической обработки измеренных значений электрических сопротивлений газовых датчиков при разных температурах, с учетом влажности, температуры среды и концентрации кислорода. В устройстве для осуществления способа, включающем газовую камеру с установленными в ней полупроводниковыми газовыми датчиками, датчиками влажности и температуры, систему подачи газа с побудителем расхода газа, электронный блок непрерывного измерения сопротивлений датчиков, их температур и электрических сигналов с датчиков влажности и температуры, электронный блок для установки температур полупроводниковых газовых датчиков, согласно изобретению устройство дополнительно снабжено датчиком кислорода, выход которого подключен ко входу электронного блока непрерывного измерения сопротивлений датчиков, а система подачи газа дополнительно снабжена устройством форсированного ввода пробы, установленным во входном отверстии газовой камеры, а также пневматической магистралью для рециркуляции пробы, через газовый тройник пневматически связанной с побудителем расхода газа и механическим спускным клапаном. Технический результат: повышение чувствительности и селективности к широкому спектру газов, улучшение воспроизводимости результатов, сокращение времени измерений, уменьшение требуемого для анализа объема пробы газа. 2 н. и 11 з.п. ф-лы, 3 ил., 1 табл.

Изобретение относится к термоэлектрическим генераторам на основе полупроводниковых структур. Сущность: способ изготовления термоэлектрического генератора включает выкалывание из слитка сульфида самария SmS плоскопараллельной пластины (3), нанесение самария (2) на поверхность первого плоского токового контакта (1), выполненного из тугоплавкого металла, наложение на самарий (2) плоскопараллельной пластины (3), отжиг полученной структуры в вакууме при температуре 1072-1200°С в течение времени t, определяемого из заданного соотношения, и последующее формирование на поверхности плоскопараллельной пластины второго токового контакта (4). Технический результат: повышение стабильности и воспроизводимости электрического сигнала генератора. 5 з.п. ф-лы, 7 ил.

Изобретение относится к области газового анализа, в частности к детектирующим устройствам, применяемым для регистрации и измерения содержания довзрывных концентраций метана в атмосферном воздухе, и может быть использовано в угольной, металлургической, коксохимической и атомной промышленности, а также в автомобильной промышленности. Полупроводниковый датчик метана содержит диэлектрическую подложку (1) и чувствительный слой (2) с нанесенными на его поверхность металлическими электродами (3) толщиной до 0,2 мкм. Чувствительный слой (2) выполнен на основе сульфида европия, модифицированного добавкой сульфида самария. Концентрация добавки не превышает 25 мол.%. Датчик имеет пониженную рабочую температуру детектирования метана в атмосферном воздухе. 3 з.п. ф-лы, 3 ил., 1 пр.

Изобретение относится к вычислительной технике и может быть использовано в гидроакустике для построения систем целеуказания, самонаведения и телеметрии в подводных аппаратах. Технический результат - повышение помехозащищенности декодирования псевдошумового сигнала. Способ декодирования псевдошумового сигнала основан на дискретизации принимаемого сигнала по переходам через нуль, преобразовании в двоичный код и сравнении с одной из нормированных биортогональных последовательностей путем интегрирования и суммирования. Двоичный код подвергают перекоммутации согласно неприводимых полиномов над полем Галуа GF(2), с помощью быстрого преобразования Уолша методом максимума Понтрягина по пороговому уровню получают номер одной из биортогональных последовательностей. Затем с помощью обратного коммутирования соответствующим полиномом над полем Галуа определяют искомый код. 1 ил.

Изобретение относится к способам демодуляции фазоманипулированных сигналов и может быть использовано в системах обнаружения или самонаведения, а также телеметрии подводных аппаратов. Технический результат заключается в повышении помехоустойчивости демодуляции фазоманипулированных сигналов путем осуществления полной синхронизации модуляционного сигнала с помощью инвариантных последовательностей независимых от случайности фазы принимаемого сигнала. В способе усиливают или ограничивают сигнал, осуществляют дискретизацию его по переходам через нуль, преобразуют в двоичный код и запоминают в оперативной памяти, измеряют несущую и сравнивают с пороговым уровнем. Двоичный сигнал, поступающий из оперативной памяти, подвергают декодированию в виде кода, при этом выделяют максимальный по уровню сигнал, соответствующий декодируемому коду, и вычитают его из поступающего из оперативной памяти сигнала. Полученную несущую подвергают прямому булевому преобразованию над полем Галуа GF(2n), складывают сопряженные преобразования и полученный вектор подвергают последовательно унитарному преобразованию над полем Галуа GF(2n) и преобразованию Уолша. По достижении порогового уровня определяют несущую демодулированную частоту. 3 ил., 3 табл.

Изобретение относится к испытательной технике и может быть использовано при натурных испытаниях подводных объектов. Технический результат - снижение погрешности определения координат позиционирования и углов ориентации объекта позиционирования в пространстве мобильного полигона. Для этого в состав объекта испытаний вводят аппаратурный комплекс с системой уточненного трехмерного позиционирования с угловой ориентацией, блок ее информационного обмена с объектом и блок начальных глобальных координат по приемнику ГЛОНАСС. При этом вводят в состав мобильного полигона буйково-якорные позиции с погружным контейнером, в котором размещают аппаратурный модуль с блоком маяка-ответчика системы уточненного позиционирования и блоком демодуляции гидроакустических телеметрических сигналов. В плавающем буе якорной позиции размещают передающее (принимающее) устройство спутниковой системы «ИНМАРСАТ» и радиомодем. На судовом (береговом) посту размещают принимающее (передающее) устройство спутниковой системы «ИНМАРСАТ». 2 ил.

Изобретение относится к гидроакустике и может быть использовано в системах целеуказания, самонаведения и телеметрии подводных аппаратов

Изобретение относится к подводной навигации и может быть использовано при подводно-технических работах общехозяйственного и специального назначения с применением автономных необитаемых подводных аппаратов (АНПА) с автоматическим или супервизорным управлением, автономно выполняющих операции, требующие уточненного позиционирования АНПА

 


Наверх