Патенты автора Ромасенко Евгений Николаевич (RU)

Изобретение может быть применено для перекачивания криогенных жидкостей, в частности сжиженного природного газа (СПГ). Транспортировку сжатого природного газа (ПГ) и СПГ осуществляют по двум размещенным в непосредственной близости трубопроводам. В качестве насосного агрегата для транспортировки СПГ используют осевую лопаточную машину (ОЛМ). Для привода в движение ОЛМ используют СПГ, направляя его в турбинное рабочее колесо, закрепленное на периферийной части насосного рабочего колеса ОЛМ. Газ с выхода турбинного рабочего колеса направляют на выход рабочего колеса ОЛМ для его ожижения в потоке СПГ и определяют зону завершения ожижения газа по потоку. Для этого контролируют степень неравномерности температуры потока сжиженного газа в его поперечном сечении, расположенном ниже по потоку за насосным агрегатом. Отбирают сжиженный газ в зоне завершения ожижения газа, а отобранный сжиженный газ регазифицируют и направляют в первый трубопровод. Технический результат заключается в уменьшении потерь природного газа при транспортировке СПГ по трубопроводу. 3 з.п. ф-лы, 1 ил.

Изобретение относится к области испытаний, в частности стендовых испытаний режимов работы ЖРД, работающих в режиме непрерывной детонации на топливной смеси, состоящей из газообразного кислорода и керосина. Изобретение представляет собой стендовый ЖРД с кольцевой камерой детонационного горения, смесительной головкой, инициатором, реактивным соплом и измерительной аппаратурой. Отличительными особенностями заявленного ЖРД является то, что смесительная головка выполнен в виде кольцевой щели в огневом днище для подачи окислителя, по обе стороны от которой под острым углом расположены форсунки подачи горючего. Другим отличием от известных решений является то, что корпус двигателя и камеры выполнен двухслойным, внутренний слой из прочного сплава, а внешний из высокотеплопроводного сплава. Изобретение обеспечивает повышение максимального рабочего давления. 8 з.п. ф-лы, 2 ил.

Изобретение относится к области ракетного двигателестроения и, в частности, к двухзонным газогенераторам с лазерным зажиганием компонентов топлива. Двухзонный газогенератор с лазерным зажиганием компонентов топлива содержит силовую оболочку с патрубками подвода окислителя и горючего и патрубок для вывода генераторного газа, внутри которой и коаксиально с ней установлена камера сгорания. Камера сгорания включает в себя охлаждаемый корпус, смесительную головку, состоящую из наружного и огневого днищ, между которыми образована полость подвода окислителя. Газогенератор содержит набор смесительных модулей и источник лазерного излучения с узлом ввода и фокусировки. Каждый из смесительных модулей состоит из основной камеры смешения и дополнительной камеры смешения. В основной камере смешения вырабатывается генераторный газ при массовом соотношении компонентов топлива Km~12÷20, а в дополнительной камере осуществляется сжигание при массовом соотношении компонентов топлива Km~50. Эти камеры расположены на одной оси, при этом торец основной камеры смешения утоплен на небольшую глубину в кольцевой канал дополнительной камеры смешения, а кольцевой канал является каналом огневого днища. Смесительные модули расположены равномерно по концентрическим окружностям смесительной головки. Узел ввода и фиксации лазерного излучения выполнен в виде цилиндра, один конец которого герметично закреплен на боковой поверхности корпуса камеры сгорания, а другой конец вставлен в отверстие силовой оболочки и герметично соединен с ней. Внутри цилиндра установлены источник лазерного излучения, фокусирующая линза и защитное стекло, и узел ввода установлен на корпусе в таком месте, чтобы лазерное излучение было сфокусировано в полости дополнительной камеры смешения вблизи торца основной камеры смешения, смесительного модуля, расположенного в последнем периферийном ряду. Для фокусировки лазерного излучения в указанном месте в корпусе камеры сгорания выполнено сквозное отверстие, а в кольцевом канале смесительного модуля выполнена прорезь на всю длину этого канала и шириной, равной его диаметру. Предлагаемое изобретение может найти применение в ракетных двигателях для надежного и многократного воспламенения топливной смеси в камере двухзонных газогенераторов. 1 з.п. ф-лы, 3 ил.

Изобретение относится к области ракетной техники, в частности к устройствам химического зажигания компонентов топлива ЖРД. Ампула с пусковым горючим для зажигания компонентов топлива ЖРД, содержащая силовой цилиндр, заполненный пусковым горючим, два мембранных узла с входным и выходным каналами, мембраны которых выполнены с кольцевой утоненной перемычкой и которые закреплены герметично со стороны входа и выхода силового цилиндра, кроме того, ампула имеет средства для разрыва мембран, для заправки силового цилиндра пусковым горючим и средства для фиксации подвижных элементов мембран после их разрыва, причем каждый из мембранных узлов включает в себя корпус, с одной стороны которого закреплена мембрана, а с другой стороны установлена заглушка, внутри корпуса установлен пиропривод, состоящий из цилиндрической направляющей и поршня со штоком, а с тыльной стороны мембраны прикреплен цилиндрический хвостовик, который соединен со штоком, кроме того, надпоршневая полость через отверстие в корпусе соединена с полостью штуцера, в которой установлен пиротехнический заряд, причем диаметр поршня больше диаметра срезываемой части мембраны, а соединение полости силового цилиндра с входным и выходным каналами осуществляется через кольцевой зазор, образующийся при разрыве мембраны и ее последующем перемещении. Кроме того, средство для заправки цилиндра пусковым горючим состоит из заправочного и сливного штуцеров, внутри которых установлены герметизирующие заглушки; средство для фиксации поршня включает в себя разрезное пружинящее кольцо, вставленное в кольцевую канавку, выполненную на поршне пиропривода, и проточку, выполненную в цилиндрической направляющей пиропривода, диаметр которой больше диаметра поршня; в конструкцию ампулы введен дополнительный фиксатор поршня, который включает в себя конус на тыльной стороне поршня и конусное отверстие, выполненное в заглушке мембранного узла; внутри силового цилиндра со стороны входа и выхода установлены перфорированные решетки. Изобретение обеспечивает упрощение системы запуска двигателя и повышение ее надежности. 4 з.п. ф-лы, 1 ил.

Изобретение относится к области ракетостроения и, в частности, к камере жидкостного ракетного двигателя (ЖРД) или газогенератора с лазерным зажиганием компонентов топлива. Камера ЖРД или газогенератора содержит силовой корпус, смесительную головку с форсунками окислителя и горючего, закрепленными на огневом днище, камеру сгорания с соплом, при этом корпус камеры имеет внешнюю силовую оболочку и внутреннюю огневую стенку, между которыми расположен тракт регенеративного охлаждения, и лазерное устройство для воспламенения компонентов топлива, при этом лазерное устройство включает штуцер, герметично установленный в отверстии, выполненном в стенке силового корпуса на ее боковой поверхности, и свечу лазера, при этом место крепления штуцера к корпусу выбрано таким образом, чтобы луч лазера, выходящий из него, был сфокусирован в зоне обратных токов и вблизи внутренней огневой стенки, в которой установлен штуцер, при этом зона обратных токов расположена на минимально возможном расстоянии от огневого днища смесительной головки и от внутренней огневой стенки, которое определяется экспериментально на модельных установках. Изобретение обеспечивает повышение надежности и многократность воспламенения топливной смеси в камере двигателя или газогенераторе. 6 з.п. ф-лы, 2 ил.

Изобретение относится к области силовых установок летательных аппаратов. Система подачи жидкого кислорода, содержащая агрегат соединенных последовательно гидравлически друг с другом насосов трех каскадов с автономными приводами, бак с кислородом и потребитель кислорода, где вход системы соединен с баком, а выход - с потребителем кислорода, в соответствии с изобретением снабжена источником газа высокого давления с вентилем, смесителем и потребителем газа, где источник газа соединен через вентиль с входом привода насоса третьего каскада, выполненного в виде турбины, выход газа из турбины третьего каскада соединен с потребителем газа и с входами газа приводов насосов первого и второго каскадов, выполненных в виде осевых турбин, расположенных коаксиально соответствующим насосам и скрепленных с ними, выходы газа из турбин первого и второго каскадов соединены через смеситель с выходом жидкого кислорода из насоса первого каскада, причем каналы подачи кислорода в насосах первого и второго каскадов выполнены диагональными с осевыми входами и выходами, а насос третьего каскада выполнен центробежным. Способ подачи жидкого кислорода из бака потребителю, заключающийся в том, что из бака подают кислород в насос первого каскада, из насоса первого каскада подают кислород в насос второго каскада, из насоса второго каскада подают кислород в насос третьего каскада, из насоса третьего каскада подают кислород потребителю, причем в насосе первого каскада давление кислорода повышают с условием обеспечения бескавитационной работы насоса второго каскада, в насосе второго каскада давление жидкого кислорода повышают до сверхкритического уровня, а в насосе третьего каскада устанавливают максимально допустимую частоту вращения, при этом на вход турбины третьего каскада подают из источника газ высокого давления, в турбине третьего каскада энергию газа преобразуют с понижением давления в механическую работу, а на выходе из турбины третьего каскада газ подают потребителю и на вход турбин первого и второго каскадов, в турбинах первого и второго каскадов энергию газа преобразуют с понижением давления в механическую работу и выпускают газ в смеситель, где его смешивают с потоком кислорода, поступающим из насоса первого каскада, при этом величину давления кислорода перед насосом третьего каскада устанавливают выше давления критического состояния кислорода не более чем на 10%, а частоту вращения ротора насоса третьего каскада выбирают на предельном уровне, исходя из условия максимально допустимого значения параметра В напряженности ротора, определяемого соотношением B=Nнn2, где Nн - мощность насоса, n - частота вращения ротора, причем частоту вращения ротора насоса второго каскада устанавливают больше частоты вращения ротора насоса первого каскада. Изобретение обеспечивает повышение КПД и уменьшения массы насосной системы при увеличении надежности ее работы. 2 н. и 4 з.п. ф-лы, 1 ил.

Изобретение относится к машиностроению, а именно к центробежным насосам для перекачивания жидкости с абразивными включениями, имеющим гидростатические или гидродинамические подшипники (П), смазываемые и охлаждаемые перекачиваемой жидкостью

 


Наверх