Патенты автора Перетягин Павел Юрьевич (RU)

Изобретение относится к области нанесения покрытий из плазмы вакуумно-дугового разряда и может быть использовано для получения наноструктурированных покрытий на стоматологические конструкции. Для нанесения многослойного покрытия (Zr,Nb)N в качестве материалов катодов используют Zr и Nb. Обрабатываемые стоматологические конструкции устанавливают в вакуумной камере с возможностью их вращения вокруг собственной оси и планетарного вращения вокруг оси стола. На расстоянии h=7-10 мм от стоматологических конструкций устанавливают оптически прозрачные экраны. На указанные конструкции и экраны подают отрицательный потенциал для обеспечения дополнительной ионной бомбардировки разрядом на основе эффекта полого катода при проведении предварительной очистки поверхности в среде аргона и при нанесении покрытий в среде реакционного газа – азота. Улучшается адгезия покрытия, снижаются остаточные напряжения, уменьшается образование капельной фазы. 1 ил.

Изобретение относится к области лазерных аддитивных технологий. Может использоваться для получения изделий из порошковых материалов. Устройство для селективного лазерного плавления порошковых материалов содержит пространственную раму, установленные в ней источник лазерного излучения, связанный с последним узел передачи лазерного излучения к сканатору, бункер и нагреваемую рабочую камеру, открытый конец которой выполнен с возможностью подачи порошкового материала из бункера с помощью разравнивающего ножа, установленного на линейном приводе разравнивания. Рабочая камера выполнена с механизмом опускания изготавливаемой заготовки. Корпус нагреваемой рабочей камеры выполнен из кварцевого стекла. Устройство также снабжено нагревательным элементом в виде никель-хромовой нити, намотанной на корпус нагреваемой рабочей камеры, и охватывающим их теплоизолятором. Обеспечивается расширение диапазона обрабатываемых порошковых материалов и эксплуатационных возможностей за счет повышения максимальной температуры подогрева. 1 ил.

Изобретение относится к области гальванотехники, в частности - к микродуговому оксидированию, и может быть использовано для формирования на сложнопрофильных поверхностях изделий из вентильных металлов керамикоподобных износо- и термостойких, электроизоляционных, коррозионно-защитных и декоративных покрытий, и может применяться в машино- и приборостроении, авиационной, радиоэлектронной и других отраслях промышленности. Устройство содержит источник питания с двумя клеммами, электролитную ванну с обрабатываемым изделием, две батареи электрических конденсаторов, четыре тиристора с четырьмя узлами гальванической развязки цепей управления, программно-аппаратную систему управления режимом, причем первые обкладки батарей подключены к первой клемме источника питания, ко второй обкладке первой батареи подключены катод первого и анод второго тиристоров, а ко второй обкладке второй батареи - катод третьего и анод четвертого тиристоров, анод первого и катод четвертого тиристоров подключены ко второй клемме источника питания и к корпусу ванны, изделие подключено к катоду второго и аноду третьего тиристоров, к управляющим переходам четырех тиристоров подключены выходы четырех узлов гальванической развязки, к входам которых подключены выходы системы управления режимом, первый вход которой подключен ко второй обкладке первой батареи, а второй вход - ко второй обкладке второй батареи, при этом устройство снабжено пятым, шестым, седьмым и восьмым тиристорами с узлами гальванической развязки, первым и вторым бесконтактными датчиками электрического тока, дополнительным автоматически управляемым противоэлектродом и его программно-аппаратной системой управления, причем первый датчик размещен в электролите снаружи от внутренней полости в изделии, а второй датчик и противоэлектрод - внутри этой полости, выходы датчиков подключены к входам системы управления противоэлектродом, анод пятого тиристора подключен к катодам второго и шестого и аноду третьего, а катод пятого тиристора соединен с анодом второго, анод шестого тиристора подключен к катоду третьего, к управляющим переходам пятого и шестого тиристоров подключены выходы двух узлов гальванической развязки, к входам которых подключены выходы системы управления режимом, анод седьмого и катод восьмого тиристоров подключены к противоэлектроду, а катод седьмого и анод восьмого тиристоров соединены с ванной, к управляющим переходам седьмого и восьмого тиристоров подключены выходы двух узлов гальванической развязки, к входам которых подключены выходы системы управления противоэлектродом, при этом обе системы управления соединены двунаправленным последовательным информационным каналом. Технический результат - повышение качества керамикоподобных упрочняющих покрытий на сложнопрофильных поверхностях изделий, в том числе с внутренними полостями, и расширение возможностей электрохимического процесса их нанесения за счет использования циклирования режимов микродугового оксидирования и введения дополнительного, автоматически управляемого противоэлектрода, размещаемого в полости изделия. 1 ил.

Изобретение относится к области гальванотехники и может быть использовано для формирования на сложнопрофильных поверхностях изделий из вентильных металлов керамикоподобных износо- и термостойких, электроизоляционных, коррозионно-защитных и декоративных покрытий в различных отраслях промышленности. Устройство содержит источник питания с двумя клеммами, электролитную ванну с изделием, две батареи электрических конденсаторов, четыре тиристора с четырьмя узлами гальванической развязки цепей управления, программно-аппаратную систему управления режимом, причем первые обкладки батарей подключены к первой клемме источника питания, ко второй обкладке первой батареи подключены катод первого и анод второго тиристоров, а ко второй обкладке второй батареи - катод третьего и анод четвертого тиристоров, анод первого и катод четвертого тиристоров подключены ко второй клемме источника питания и к корпусу ванны, изделие подключено к катоду второго и аноду третьего тиристоров, к управляющим переходам четырех тиристоров подключены выходы четырех узлов гальванической развязки, к входам которых подключены выходы системы управления режимом, первый вход которой подключен ко второй обкладке первой батареи, а второй вход - ко второй обкладке второй батареи, при этом устройство снабжено пятым, шестым, седьмым и восьмым тиристорами с узлами гальванической развязки цепей управления, первым и вторым бесконтактными датчиками электрического тока, дополнительным управляемым противоэлектродом и его программно-аппаратной системой управления, причем первый датчик размещен в электролите снаружи изделия, а второй датчик и противоэлектрод - внутри полости изделия, выходы датчиков подключены к входам системы управления противоэлектродом, анод пятого тиристора подключен к катодам второго и шестого и аноду третьего, а катод пятого тиристора соединен с анодом второго, анод шестого тиристора подключен к катоду третьего, к управляющим переходам пятого и шестого тиристоров подключены выходы двух узлов гальванической развязки, к входам которых подключены выходы системы управления режимом, анод седьмого и катод восьмого тиристоров подключены к противоэлектроду, а катод седьмого и анод восьмого тиристоров соединены с ванной, к управляющим переходам седьмого и восьмого тиристоров подключены выходы двух узлов гальванической развязки, к входам которых подключены выходы системы управления противоэлектродом. Технический результат - повышение качества покрытий, формируемых на сложнопрофильных поверхностях изделий, в том числе с внутренними полостями, и расширение возможностей процесса их нанесения за счет использования циклирования режимов микродугового оксидирования и введения дополнительного управляемого противоэлектрода, размещаемого во внутренней полости обрабатываемого изделия. 1 ил.

Изобретение относится к области металлургии металлов и сплавов, а именно к производству лигатур на основе алюминия для легирования сплавов на основе алюминия, содержащих тугоплавкие металлы. Спеченная лигатура из порошковых материалов для легирования алюминиевых сплавов содержит, мас. %: молибден 40-50; медь 4,0-4,5; алюминий - остальное. Изобретение направлено на расширение эксплуатационных возможностей лигатуры для выплавки алюминиевых сплавов за счет улучшения распределения и увеличения скорости растворения легирующих компонентов в расплаве, повышения стабильности составов выплавленных сплавов с получением более точного и гомогенного их содержания во всем объеме расплава и готового слитка. 4 табл., 3 пр.

Изобретение относится к области металлургии, а именно к составу электролита для плазменного химико-термического модифицирования металлов и сплавов, и может использоваться для повышения износостойкости поверхности обрабатываемых изделий. Электролит для анодного плазменно-электролитного модифицирования содержит, мас. %: хлорид аммония 8-12; нитрат аммония 4-7; борная кислота 2-5 и вода остальное. При использовании электролита обеспечивается снижение затрачиваемой электрической мощности, требуемой на проведение процесса, а также увеличение износостойкости модифицированного слоя и снижение шероховатости поверхности деталей за счет использования боросодержащего компонента и анодной поляризации обрабатываемых изделий. 3 табл., 1 пр.

Изобретение относится к области металлургии, в частности к производству антифрикционных алюминиевых литейных сплавов с высокими трибологическими и прочностными характеристиками, используемыми в машиностроении при изготовлении монометаллических подшипников скольжения. Антифрикционный алюминиевый литейный сплав для монометаллических подшипников скольжения содержит, мас.%: олово 4,5-8, свинец 2-4, медь 3,5-4,5, кремний 0,6-1,0, цинк 2,0-3,0, магний 1,5-2,5, титан 0,03-0,2, хром 0,8-1,2, алюминий - остальное. Сплав характеризуется высокими значениями нагрузки задира, площади приработки, предела прочности, относительного удлинения и твердости сплава при снижении средней удельной нагрузки. 14 табл., 1 пр.

Изобретение относится к электротехнике, в частности, к композиционным дисперсно-упрочненным материалам для электрических разрывных контактов и может найти применение в производстве коммутационной аппаратуры, железнодорожного и городского электрического транспорта и т.п. Способ изготовления материала для электрических разрывных контактов, включает следующие стадии: (A) выплавку сплава, содержащего, следующие компоненты, масс. %: Олово0,1-0,2,Алюминий 0,15-0,3,Медь остальное; (Б) фрезерование сплава с образованием стружки; (B) окисление сплава со стадии (Б) при температуре 280-320°С;(Г) механическое измельчение сплава со стадии (В) с получением порошка со средним размером частиц не более 60 мкм;(Д) отжиг порошка сплава со стадии (Г) при температуре 900-970°С, (Е) одновременное прессование и спекание порошка со стадии (Д) путем пропускания тока при прессовании с давлением не менее 80МПа с плотностью тока 80-130А/мм2. Изобретение позволяет получить материал с высокой удельной электропроводностью. 2 н. и 7 з.п. ф-лы, 1 табл.

Изобретение относится к технологии получения керамических композитов с улучшенными механическими, экологическими и декоративными характеристиками и может быть использовано для производства ответственных технических и/или декоративных и ювелирных изделий, таких как корпус часов, циферблат, а также в иных областях народного хозяйства. В способе получения черного керамокомпозитного изделия, включающем диспергирование пигмента в дистиллированной воде с последующим добавлением в полученную суспензию керамической матрицы, сушку до получения порошкообразной массы, формование заготовки из полученной порошкообразной массы и ее спекание, при диспергировании в качестве пигмента используют оксид графена, керамическую матрицу добавляют в суспензию оксида графена в виде водной суспензии стабилизированного оксидом иттрия оксида циркония, сушку осуществляют предварительным удалением жидкой фазы с последующей лиофилизацией, а графен восстанавливают из оксида графена в процессе изготовления изделия путем искрового плазменного спекания заготовки. Оптимально масса оксида графена составляет 0,37-0,74% от массы графена и стабилизированного оксидом иттрия оксида циркония. Технический результат - расширение технологических возможностей получения изделия, пригодного для тонкой финишной обработки с использованием электрофизических и/или электрохимических методов за счет повышения удельной проводимости материала. 1 з.п. ф-лы, 1 пр., 2 табл., 2 ил.

Изобретение относится к электроимпульсной консолидации порошков твердых сплавов. Проводят спекание изделий из порошков твердых сплавов группы WC-Co путем электроимпульсного прессования при давлении 50-500 МПа, плотности импульса тока 50-500 кА/см2 и длительности импульса тока не более 10-3с с последующим охлаждением. В процессе охлаждения по достижении изделием температуры Кюри кобальта его подвергают магнитно-импульсной обработке напряженностью поля 400-2000 кА/м в течение не менее 0,01 с. Обеспечивается повышение качества изделий за счет снижения структурной неоднородности и свободной энергии материала изделия. 1 з.п. ф-лы, 2 ил., 1 табл., 1 пр.

Изобретение относится к области машиностроения, в частности к электрофизическим методам обработки закаленных стальных деталей электроискровым легированием. В способе электроискрового легирования закаленных стальных деталей осуществляют перенос легирующего материала электрода-инструмента на поверхность детали под действием импульсных электроискровых разрядов между подключенными к источнику постоянного электрического тока в качестве анода электродом-инструментом, а в качестве катода деталью. При этом в процессе легирования осуществляют непрерывный контакт электрода-инструмента с деталью, а подвод к ним электрического тока осуществляют так, что 10≤j≤100, 10-3≥tch≥10-5, tp>tch, где j - плотность тока (кА/см2), tch - длительность импульса тока (с), tp - длительность паузы между импульсами тока (с). Техническим результатом изобретения является упрочнение закаленных стальных деталей электроискровым легированием, обеспечивающее повышение производительности. 7 ил., 1 табл., 1пр.

Изобретение относится к области металлургии, а именно к электроимпульсной обработке твердосплавных пластин режущего инструмента, и может быть использовано в металлообрабатывающей, машиностроительной и инструментальной отраслях промышленности. В способе обработки твердосплавных пластин режущего инструмента, включающем воздействие на пластины импульсным электрическим током, воздействие осуществляют импульсами электрического тока с частотой 10-100 кГц с энергией 1-100 кДж и длительностью воздействия 10-3-10-5 с. Повышается износостойкость инструмента и расширяются технологические возможности осуществления способа. 2 ил., 2 табл., 2 пр.
Изобретение относится к технологии изготовления медно-титановых токопроводящих контактных элементов. Медный и титановый компоненты сопрягают друг с другом и соединяют в медно-титановый токопроводящий контактный элемент. Соединение упомянутых компонентов осуществляют искровым плазменным спеканием при температуре Тсп., причем Тр.Cu<Тсп.<Тф.п.Ti, где Тр.Cu - температура рекристаллизации меди, Тф.п.Ti - температура полиморфного превращения титана α↔β. Обеспечивается получение медно-титанового токопроводящего контактного элемента с переходным сопротивлением равным или близким к нулю при повышении прочности сворного шва медного и титанового компонентов. 1 з.п. ф-лы, 2 ил., 1 табл.
Изобретение относится к области порошковой металлургии. Способ спекания изделий из порошков твердых сплавов группы WC-Co включает электроимпульсное прессование при давлении 50-500 МПа, плотности импульса тока 50-500 кА/см2 и длительности импульса тока не более 10-3 с. Причем электроимпульсное прессование осуществляют с достижением изделием температуры не выше 1050°С, после чего спрессованное изделие продолжают подвергать импульсному воздействию тока при плотности импульса тока 1-10 кА/см2 до достижения изделием температуры 1100°С. Обеспечивается улучшение физико-механических характеристик получаемых изделий за счет устранения остаточной пористости. 3 з.п. ф-лы, 4 ил., 1 пр.

Изобретение относится к технологии получения керамических материалов на основе карбида вольфрама (WC), а также к технологии искрового плазменного спекания для получения керамических нанокомпозитов, обрабатываемых электрофизическими и электрохимическими методами, и может быть использовано в различных областях науки и техники. Способ получения нанокомпозита графена и карбида вольфрама включает диспергирование оксида графена в дистиллированной воде с последующим добавлением в полученную суспензию водной суспензии нанопорошка карбида вольфрама, удаление жидкой фазы из суспензии до получения порошкообразной массы, формирование под давлением заготовки из полученной порошкообразной массы и ее искровое плазменное спекание. Удаление жидкой фазы осуществляют центрифугированием с последующей лиофилизацией, а восстановление графена происходит в процессе искрового плазменного спекания заготовки. Содержание графена составляет менее 0,8 мас.% композитного материала. Технический результат - упрощение способа при одновременном повышении механических характеристик нанокомпозита графена и карбида вольфрама. 1 з.п. ф-лы, 1 табл., 2 ил.

Изобретение относится к получению изделий искровым плазменным спеканием композиционных порошков под давлением. Устройство содержит верхний и нижний пуансоны-токоподводы и выполненную из токопроводящего материала матрицу с изоляционной втулкой, верхней втулкой-токоподводом и нижней втулкой-токоподводом. Нижний пуансон установлен внутри нижней втулки и своим торцом размещен в изоляционной втулке, а верхний пуансон установлен в верхней втулке и своим торцом размещен в изоляционной втулке. Верхний пуансон выполнен состоящим из верхней и нижней токопроводящих частей, разделенных друг от друга электроизоляционным материалом. Верхняя часть верхнего пуансона выполнена с возможностью подключения к источнику питания с прохождением электрического тока через верхнюю втулку-токоподвод, матрицу, нижнюю втулку-токоподвод и нижний пуансон, а нижняя часть верхнего пуансона выполнена с возможностью подключения к источнику питания с прохождением электрического тока через нижний пуансон и композиционный порошок. Обеспечивается повышение качества изделий. 1 ил.

Изобретение относится к технологии получения керамических материалов - нанокомпозитов на основе нитрида кремния (Si3N4), и может быть использовано в различных областях науки и техники. Способ получения нанокомпозита включает смешивание керамических частиц Si3N4 в этаноле с последующим добавлением в полученную суспензию жидкофазного алкоголята титана и предварительный нагрев суспензии до получения порошкообразной массы. Полученный порошок измельчают, затем осуществляют двухстадийную термическую обработку. На первой стадии проводят нагрев, обеспечивающий удаление жидкофазной среды: при 60°C в течение 24 часов и при 120°С в течение 2 часов, а на второй стадии проводят дальнейший нагрев при температуре 300-600оС до образования анатаза без рутила и удаления органических составляющих с последующим азотированием порошка в аммиачной среде при 800-1200оС до превращения анатаза в нитрид титана. Порошок просеивают, формируют заготовку с последующим искровым плазменным спеканием изделия. Заявленный способ позволяет получать электропроводные нанокомпозиты системы Si3N4-TiN с однородной микроструктурой, где наночастицы TiN распределены в виде мелких включений на поверхности Si3N4, которые можно обрабатывать электрофизическими и электрохимическими методами. 1 з.п. ф-лы, 5 пр., 1 табл.

Изобретение относится к порошковой металлургии, в частности к устройствам для получения изделий из порошков лазерным плавлением

 


Наверх