Патенты автора Корсакова Елена Анатольевна (RU)

Изобретение относится к области металлургии благородных металлов, в частности к переработке сурьмянистого золотосодержащего катодного осадка, включающего примесные металлы в том числе сурьму, и позволяет получать лигатурное золото с минимально допустимым содержанием примесей, в соответствии с требованиями аффинажного производства для применения минимальных расценок стоимости аффинажа.Сущность предложенного решения состоит в том, что способ переработки сурьмянистого золотосодержащего катодного осадка включает выщелачивание примесей с последующей фильтрацией полученного раствора, получением фильтрата и нерастворимого золотосодержащего остатка, сушкой, окислительным обжигом и последующей плавкой нерастворимого золотосодержащего остатка, выщелачивание примесей сурьмянистого золотосодержащего катодного осадка проводят в растворе азотной кислоты и винной кислоты или по меньшей мере одной ее соли с переводом сурьмы в раствор в виде растворимого соединения, полученный при обжиге огарок шихтуют с бурой и содой и плавят с получением лигатурного золота, а полученный при плавке шлак растворяют в фильтрате с целью извлечения золота из шлака.Техническим результатом изобретения является сокращение перехода сурьмы и других примесных элементов из сурьмянистого золотосодержащего катодного осадка в конечный продукт переработки - золото лигатурное, а также исключение потерь золота при его извлечении из сурьмянистого золотосодержащего катодного осадка.
Изобретение относится к терагерцовым (ТГц) материалам, а именно к кристаллам востребованных для применения в медицине, фармацевтике, таможенном дистанционном контроле и в других областях. Терагерцовый кристалл согласно изобретению характеризуется тем, что выполнен на основе однофазных твердых растворов системы AgCl - AgBr, содержит хлорида и бромида серебра при следующем соотношении ингредиентов, мас. %: хлорид серебра - 0,0-90,0; бромид серебра - 90,0-10,0. Изобретение обеспечивает возможность формировать кристаллы, пропускающие излучение в широкой спектральной области - от терагерцового до миллиметрового, инфракрасного и видимого диапазонов с высокой оптической прозрачностью из нетоксичных, негигроскопичных, пластичных материалов.
Изобретение относится к области получения ИК волоконных сборок из галогенидсеребряных световодов, предназначенных для передачи теплового изображения в среднем инфракрасном диапазоне (2-20 мкм) и востребованных для применения в промышленной и медицинской термографии с целью визуализации распределения теплового поля от удаленного объекта. Способ получения инфракрасных волоконных сборок на основе галогенидсеребряных световодов включает получение световодов методом экструзии из монокристаллов твердых растворов хлорид-бромида серебра и их упаковку в гексагональную структуру. При этом предварительно из монокристалла вырезают заготовку диаметром 14-16 мм, высотой 15-20 мм, после чего методом экструзии получают поликристаллическую заготовку с величиной зерна 500-600 нм, диаметром 3 мм, длиной 430±5 мм. Затем вторично экструдируют для получения однослойных световодов диаметром 100 мкм размером зерен 50-60 нм, из которых механической сборкой формируют гексагональную структуру из 19, 37 и 61 световода с последующим их уплотнением, при этом диаметры сборок составляют 500, 700, 900 мкм и длиной 2,7±0,3 м. При этом световоды содержат 25,0–75,0 мас.% хлорида серебра и 75,0–25,0 мас.% бромида серебра. Обеспечивается повышение температурного разрешения, уменьшение оптических потерь и снижение перекрестных помех. 3 пр.
Изобретение относится для применений в различных областях специальной волоконной оптики на основе инфракрасных (ИК) волоконных сборок, изготовленных из фото- и радиационно-стойких световодов новой системы AgBr – (TlBr0,46I0,54). Способ получения волоконных сборок на основе поликристаллических инфракрасных световодов, включающий их упаковку в сборку, отличающийся тем, что световоды поликристаллической структуры выполняют из монокристаллов системы AgBr – (TlBr0,46I0,54) путем вырезания заготовки диаметром 13,0–15,0 мм, высотой 24,0–34,0 мм. Затем методом экструзии изготавливают однослойную заготовку с величиной зерна 700,0–800,0 нм, диаметром 3,0 мм, длиной 645,0±5 мм и вторично экструдируют для получения нанокристаллического световода с размером зерна 70,0–80,0 нм, диаметром 90,0 мкм, длиной 675,0±1 м, который разрезают на световоды длиной 4,0–5,0 м, и механической укладкой из 7; 37; 91 световода формируют сборки гексагональной формы с последующим их уплотнением, при этом диаметр сборок составляет 210; 630; 990 мкм, причем световоды содержат ингредиенты при следующем соотношении, мас. %: бромид серебра 95,0–60,0; твердый раствор TlBr0,46I0,54 5,0–40,0. Технический результат – повышение пространственного и температурного разрешения волоконных сборок.

Изобретение относится к одномодовым кристаллическим ИК световодам, которые предназначены для доставки ИК излучения медицинских твердотельных лазеров с параметрическим преобразованием частоты на длине волны 5,75 мкм. Одномодовый кристаллический инфракрасный световод включает сердцевину и оболочку, выполненные на основе твердых растворов хлорид-бромид серебра. При этом сердцевина диаметром 48,0-52,0 мкм выполнена с центральным стержнем в ней диаметром 11,0-13,0 мкм, оболочка выполнена наружным диаметром 95,0-105,0 мкм с расположенными в ней в гексагональном порядке шестью стержнями диаметром 11,0-13,0 мкм на расстоянии 30,0-32,0 мкм между их центрами, при этом центральный стержень содержит ингредиенты при следующем соотношении, мас.%: хлорид серебра 83,0-83,9; бромид серебра 17,0-16,1, сердцевина и оболочка выполнены из кристаллов твердых растворов при следующем соотношении компонентов, мас.%: хлорид серебра 81,3-82,1; бромид серебра 18,7-17,9, стержни в оболочке имеют состав при следующем соотношении компонентов, мас.%: хлорид серебра 79,6-80,4; бромид серебра 20,4-19,6. Технический результат – обеспечение возможности для своевременного проведения малоинвазивных внутрисосудистых операций. 1 ил.

Изобретение относится к металлургии благородных металлов, в частности к переработке сульфидных концентратов, содержащих благородные металлы. Проводят гидрохимическую доводку сульфидного концентрата в растворе азотной кислоты с отделением раствора-маточника. Концентрат «золотая головка» обезвоживают, помещают в реактор и растворяют примеси раствором азотной кислоты при постоянном перемешивании со скоростью вращения вала мешалки 250-500 об/мин и непрерывной подаче кислородсодержащего газа. Полученный раствор фильтруют с получением золотосодержащего нерастворимого остатка, который промывают водой и подвергают окислительному обжигу при температуре 650-750°С. Полученный огарок «золотой головки» шихтуют с бурой и содой и плавят с получением слитков лигатурного золота и шлака. Способ обеспечивает увеличение извлечения золота в слиток, увеличение скорости плавки до 80 кг/ч и более. 3 з.п. ф-лы, 3 табл., 3 пр.

Изобретение относится к обжиговым печам непрерывного действия для термической обработки материала при контролируемой газовой атмосфере и температуре нагрева в режиме непрерывной работы и постоянном перемешивании материала, в частности к шнеко-трубчатой печи. Шнеко-трубчатая печь содержит теплоизоляционный корпус, электронагреватели, трубу-реторту, оснащенную загрузочной и разгрузочной течками, патрубком для подачи/забора воздуха и аптейком; шнек, расположенный внутри трубы-реторты и выполненный с возможностью вращения от электропривода; газоход, систему пылеулавливания и систему КИП, при этом труба-реторта выполнена диаметром в 1,4-2,5 раза больше диаметра шнека с формированием надшнекового пространства внутри трубы-реторты. Шнеко-трубчатая печь может быть выполнена двух-, трех- или четырехступенчатой. Обеспечивается возможность обработки как порошковых, так тонкодисперсных материалов с влажностью до 70% абс. и содержанием выгораемых и легколетучих компонентов от 5 до 95%, при этом пылевынос составляет ~0,5% от загрузки. 2 н. и 16 з.п. ф-лы, 4 ил.
Монокристаллы предназначены для ИК-техники и для изготовления из них методом экструзии одно- и многомодовых ИК-световодов для спектрального диапазона от 2 до 50 мкм, при этом формируется нанокристаллическая структура ИК-световодов с размером зерна от 30 до 100 нм, определяющая их функциональные свойства. Монокристалл изготовлен на основе бромида серебра и твердого раствора бромида и йодида одновалентного таллия (TlBr0.46I0.54) при следующем соотношении компонентов в мас.%: бромид серебра - 99,5-65,0; твердый раствор TlBr0.46I0.54-0,5-35,0. Технический результат - воспроизводимость и прогнозируемость свойств, отсутствие эффекта спайности, устойчивость к радиационному, ультрафиолетовому, видимому и ИК-излучению.

 


Наверх