Патенты автора Карепанов Михаил Владимирович (RU)

Изобретение относится к области химической технологии и теплоэнергетики на основе переработки топливной биомассы путем газификации с получением горючего газа, содержащего оксид углерода и водород. Способ предусматривает газификацию топливной биомассы в плотном слое, перемещающемся вдоль оси вращающегося вокруг своей оси наклонного цилиндрического реактора, включая загрузку твердого измельченного биотоплива в реактор, подачу в реактор газифицирующего агента - воздуха со стороны реактора, где происходит накопление твердых остатков газификации - золы, перемещение загруженной топливной биомассы вдоль оси реактора, вывод твердых остатков газификации и горючего топливного газа из реактора с фильтрацией газового потока через слой загруженного топлива последовательным прохождением зон реактора противотоком движению топлива. Подача воды в реактор осуществляется посредством парообразования в испарительных полостях 13, непосредственно примыкающих к рабочей камере 2 реактора, за счет теплового потока из активной зоны окисления/восстановления 7 с инжекцией в нее пара через перфорированную/пористую стенку рабочей камеры. Удаление золы осуществляют через буферный слой 17 из твердых частиц, принудительно перемешиваемый при вращении реактора. Реактор оснащен поясом пароводяной завесы, включающим кольцевой резервуар для воды 12 и соединенные с ним испарительные полости 13, непосредственно примыкающие к перфорированной либо пористой стенке рабочей камеры и образующие ячеистую (сотовую) структуру, а также введение в разгрузочное устройство регулировочного блока 4 с каналом для воздушного дутья 22 и внутренним резервуаром для воды с датчиком температуры. Технический результат - повышение качества получаемого топливного газа, уменьшение потерь тепла, повышение компактности, экономичности, надежности и долговечности реактора, упрощение его конструкции. 2 н. и 5 з.п. ф-лы, 12 ил., 1 табл.

Изобретение относится к области химической технологии и теплоэнергетики на основе переработки топливной биомассы, включая утилизацию твердых органических углеродсодержащих отходов, путем газификации с получением горючего газа для последующего производства тепловой и электрической энергии. Способ предусматривает газификацию топливной биомассы в плотном слое, перемещающемся вдоль оси вращающегося цилиндрического реактора, включающий загрузку топлива в реактор, подачу в реактор газифицирующего агента, содержащего кислород, со стороны реактора, где происходит накопление твердых остатков горения, перемещение загруженной топливной биомассы вдоль оси реактора, вывод твердых остатков горения из реактора, вывод из реактора горючего топливного газа таким образом, что газификацию проводят посредством последовательного пребывания топливной биомассы в зоне нагревания и сушки 5, зоне пиролиза 6, активной зоне окисления/восстановления 7 и зоне охлаждения 8, а газовый поток фильтруют через слой загруженной топливной биомассы противотоком ее движению. Подача воды в реактор в активную зону окисления/восстановления осуществляется в виде пара, образование которого происходит в испарительных полостях 13, непосредственно примыкающих к стенке рабочей камеры 2 реактора, за счет теплового потока из активной зоны окисления/восстановления с инжекцией в нее перегретого пара сквозь перфорированную/пористую стенку рабочей камеры распределенно по периметру и по длине активной зоны. Реактор оснащен поясом пароводяной завесы, включающим кольцевой резервуар для воды 12 и соединенные с ним испарительные полости, непосредственно примыкающие к перфорированной либо пористой стенке рабочей камеры и образующие ячеистую структуру. Технический результат - повышение качества получаемого топливного газа, уменьшение потерь тепла, повышение компактности, экономичности, надежности и долговечности реактора, упрощение его конструкции. 2 н. и 3 з.п. ф-лы, 6 ил., 1 табл.

Изобретение относится к области химической технологии и теплоэнергетики на основе переработки топливной биомассы путем газификации с получением горючего газа. Способ газификации топливной биомассы в плотном слое, перемещающемся вдоль оси вращающегося вокруг своей оси наклонного цилиндрического реактора, включает загрузку твердого измельченного биотоплива в реактор, подачу в реактор газифицирующего агента - воздуха со стороны реактора, где происходит накопление твердых отходов газификации - золы, перемещение загруженного топлива вдоль оси реактора, вывод золы и горючего топливного газа из реактора с фильтрацией газового потока через слой загруженной топливной биомассы. Подача воды в реактор осуществляется в виде перегретого водяного пара, получаемого в парогенераторном блоке 10 в зоне охлаждения 8 реактора и поступающего в активную зону окисления/восстановления 7 вместе с центральным воздушным дутьем через прилегающий слой твердых отходов газификации, принудительно разрыхляемый при вращении реактора относительно неподвижного парогенераторного блока. Корпус парогенераторного блока имеет форму усеченного конуса/пирамиды с резервуаром для воды, соединенным с центральным осевым каналом для воздушного дутья через дроссельный клапан для сброса перегретого пара, снабжен датчиком температуры воды/пара, буферным слоем 11 из частиц шарообразной формы из твердого износостойкого инертного жаропрочного материала, принудительно разрыхляемого и перемешиваемого при вращении реактора для размельчения и просеивания золы перед ее удалением через разгрузочное устройство. Технический результат - повышение энергоэффективности процесса газификации, улучшение качества газа, уменьшение потерь тепла, повышение надежности и упрощение конструкции реактора. 2 н. и 5 з.п. ф-лы, 6 ил.

Изобретение относится к области измерений и может быть использовано для определения положения центра масс статически неопределимых многоопорных объектов энерго-, тяжелого и транспортного машиностроения, например крупногабаритных энергоблоков атомных электростанций. Заявленный способ заключается в многократном взвешивании объекта в различных пространственных положениях (в горизонтальном и в наклоненном состояниях). Начальное пространственное положение объекта принимают за горизонтальное, для него определяют суммарный вес объекта и координаты точки центра масс в горизонтальной плоскости. Для определения веса объекта суммируют значения реакций в опорах, определенных по силовым характеристикам, а координаты точки центра масс в горизонтальной плоскости получают из уравнений механики. Для определения высоты положения точки центра масс объект наклоняют только по длинной стороне (по углу крена), пошагово определяя реакции в опорах, а также усилие, развиваемое в устройствах подъема (например, в гидродомкратах). Реакции в опорах определяются на основании замеров их деформаций по силовым характеристикам, а усилия в домкратах - по давлению подаваемой в них жидкости. Подъем выполняется до момента, пока сумма реакций в опорах, расположенных в поднимаемой стороне, и усилия в домкратах не станут уменьшаться в сравнении с предыдущим шагом, а сумма реакций опор по противоположной стороне не начнет, соответственно, стабильно расти. Данным на этом шаге подъема (поворота по крену) используются для расчета по уравнениям моментов высоты положения центра масс объекта. Технический результат заключается в возможности проведения измерений в случаях отсутствия средств прямого взвешивания объектов, в режиме эксплуатации, и условиях ограниченного пространства, с обеспечением точности измерений протяженных объектов переменной жесткости. 3 ил.

 


Наверх