Патенты автора Садеев Тагир Султанович (RU)

Изобретение относится к области исследования или анализа веществ и материалов путем определения их химических или физических свойств, в частности к рефрактометрическим датчикам оценки качества топлива. Устройство содержит источник оптического излучения, первый отрезок оптического волокна, помещаемый в канал подачи топлива, и первый фотоприемник, соединенный с блоком обработки сигналов. Первый отрезок оптического волокна состоит из сердцевины, внутри которой сформирована внутриволоконная решетка, оболочки и защитного покрытия, отсутствующего в зоне внутриволоконной решетки. В устройство дополнительно введены разветвитель, второй отрезок оптического волокна, аналогичный первому, с частично вытравленной оболочкой в зоне внутриволоконной решетки, и помещаемый в канал подачи топлива параллельно первому отрезку оптического волокна, и второй фотоприемник. Выход источника оптического излучения соединен со входом разветвителя, выходы которого через первый и второй отрезки оптических волокон соединены соответственно с входами первого и второго фотоприемников, а выход второго фотоприемника соединен со вторым входом блока обработки сигналов. Технический результат - повышение точности оценки качества топлива. 3 ил.

Изобретение относится к технике оптических измерений и может быть использовано для измерения параметров физических полей (температура) с помощью оптических датчиков. Согласно заявленному предложению для определения параметра физического поля находят разность между амплитудами огибающих. По зависимости от разности амплитуд огибающих определяют обобщенную расстройку полосы пропускания оптического датчика от средней частоты первой и второй сгенерированных пар сигналов, которая однозначно связана с параметром измеряемого физического поля. Для осуществления данного способа предложено устройство, содержащее последовательно соединенные источник лазерного излучения, первый волоконно-оптический кабель, оптический датчик, второй волоконно-оптический датчик и фотоприемник, а также контроллер определения параметра физического поля. В устройство также введены два избирательных фильтра и два амплитудных детектора. При этом источник лазерного излучения выполнен четырехчастотным, а выход фотоприемника через первый избирательный фильтр и первый амплитудный детектор подключен к первому входу контроллера определения параметра физического поля, который выполнен как контроллер определения температуры, и параллельно через второй избирательный фильтр и второй амплитудный детектор к его второму входу. Технический результат: повышение точности измерений. 2 н. и 3 з.п. ф-лы, 2 ил.

Изобретение относится к оптической измерительной технике и может быть использовано для измерения параметров физических полей. Согласно способу генерируют пару сигналов близкой амплитуды со средней частотой, соответствующей определенной частоте полосы пропускания оптического датчика при заданном значении параметра физического поля и разностной частотой, достаточно узкой, для того чтобы оба сигнала попали в указанную полосу пропускания. Сгенерированную пару сигналов передают к оптическому датчику через оптический разветвитель по первой оптической среде. Принимают пропущенную через оптический датчик и сгенерированную пары сигналов, передаваемые соответственно по второй и третьей оптическим средам. Определение параметра физического поля производят за счет измерения коэффициента модуляции огибающей биений сигналов пары, прошедшей через оптический датчик, и определяя знак разности фаз между огибающей биений сигналов сгенерированной пары и огибающей биений сигналов пары, прошедшей через оптический датчик. Технический результат - повышение точности измерения за счет исключения источников погрешностей измерения. 1 з.п. ф-лы, 3 ил.

 


Наверх