Патенты автора Степущенко Олег Александрович (RU)

Изобретение относится к радиовещательным системам адресного оповещения населения о чрезвычайных ситуациях. Техническим результатом является повышение точности адресного оповещения населения и повышение вероятности оповещения людей, находящихся в зоне чрезвычайной ситуации. Упомянутый технический результат достигается тем, что для передачи сигналов оповещения используется штатная вещательная сеть мощных радиопередатчиков; эфирная передача сигналов оповещения осуществляется с тех же радиопередатчиков и в том же частотном диапазоне, что и основное вещание, что гарантирует равнозначные условия прохождения как радиосигналов оповещения, так и сигналов основного вещания. Использование для передачи активационных сообщений для активации радиоприемных устройств, находящихся в режиме ожидания, технологии FM RDS в кратковременной паузе основного вещания позволяет решить проблему дистанционной активации радиоприемных устройств. 3 н. и 7 з.п. ф-лы, 4 ил.

Техническое решение относится к технике резонансных радиотехнических измерений для вычисления и мониторинга комплексной диэлектрической проницаемости материалов. Сущность: способ для измерения характеристик резонансных структур заключается в том, что генерируют одночастотное зондирующее колебание, преобразуют его в многочастотное, подают его на вход и принимают с выхода резонансной структуры, перестраивают частоту зондирующего колебания в диапазоне измерений, соответствующем полосе частот резонансной структуры, регистрируют изменения его параметров, по которым определяют резонансную частоту fp, амплитуду Up и добротность Q резонансной структуры. Отличительной особенностью данного способа является то, что зондирующее колебание на входе резонансной структуры формируют как два двухчастотных колебания с двумя парами составляющих равной или попарно равной амплитуды соответственно на частотах f11, f12 и f21, f22 с одинаковой средней частотой fC=(f11+f12)/2=(f21+f22)/2 и разными разностными частотами ΔfP1=f11-f12 и ΔfP2=f21-f22, меньших или одна из которых равна полосе пропускания резонансной структуры, перестраивают среднюю частоту fC, причем в ходе перестройки разностные частоты ΔfP1 и ΔfP2 оставляют неизменными, регистрируют изменение средней частоты зондирующего колебания fC и параллельно измеряют коэффициент модуляции m1 и m2 огибающих сигнала биений между составляющими 1-го и 2-го двухчастотных колебаний на выходе резонансной структуры. По достижении коэффициентом модуляции значения m1=m2=1 измеряют резонансную частоту fP как равную значению средней частоты fC в данный момент времени и измеряют соответствующие ему амплитуды огибающих сигнала биений между составляющими 1-го и 2-го двухчастотных колебаний U1 и U2 на выходе резонансной структуры, далее вычисляют резонансную амплитуду UP резонансной структуры по выражению U p = ( χ 2 U 1 2 − U 2 2 ) / ( χ 2 − 1 ) , где χ=U2ΔfP2/U1ΔfP1, и добротность Q резонансной структуры - Q = f p Δ f P i ( U p / U i ) 2 − 1 , где i равно 1 или 2. В устройство для измерения характеристик резонансных структур, содержащее последовательно соединенные перестраиваемый по частоте генератор, преобразователь одночастотного колебания в многочастотное, коммутатор и детектор, а также контроллер управления и измерения характеристик резонансных структур, последовательно соединенные с коммутатором первую линию передачи, резонансную структуру и вторую линию передачи, где второй выход коммутатора подключен к входу первой линии передачи, а второй вход коммутатора подключен к выходу второй линии передачи, дополнительно введены перестраиваемые избирательные фильтры соответственно первой и второй разностных частот, подключенные входами параллельно к выходу детектора, выходами соответственно к первому и второму входам контроллера управления и измерения характеристик резонансных структур, а перестраиваемый по частоте генератор, преобразователь одночастотного колебания в многочастотное, коммутатор, контроллер управления и измерения характеристик резонансных структур и перестраиваемые избирательные фильтры соответственно первой и второй разностных частот имеют входы/выходы управления, объединенные в шину управления. Технический результат: повышение чувствительности и точности измерений. 2 н.п. ф-лы, 3 ил., 2 прил.

Изобретение относится к области исследования или анализа веществ и материалов путем определения их химических или физических свойств, в частности к рефрактометрическим датчикам оценки качества топлива. Устройство содержит источник оптического излучения, первый отрезок оптического волокна, помещаемый в канал подачи топлива, и первый фотоприемник, соединенный с блоком обработки сигналов. Первый отрезок оптического волокна состоит из сердцевины, внутри которой сформирована внутриволоконная решетка, оболочки и защитного покрытия, отсутствующего в зоне внутриволоконной решетки. В устройство дополнительно введены разветвитель, второй отрезок оптического волокна, аналогичный первому, с частично вытравленной оболочкой в зоне внутриволоконной решетки, и помещаемый в канал подачи топлива параллельно первому отрезку оптического волокна, и второй фотоприемник. Выход источника оптического излучения соединен со входом разветвителя, выходы которого через первый и второй отрезки оптических волокон соединены соответственно с входами первого и второго фотоприемников, а выход второго фотоприемника соединен со вторым входом блока обработки сигналов. Технический результат - повышение точности оценки качества топлива. 3 ил.

Изобретение относится к технике резонансных радиотехнических измерений. Способ включает генерацию зондирующего колебания, подачу на вход и прием с выхода резонансной структуры, перестройку частоты зондирующего колебания в диапазоне измерений, соответствующем полосе частот резонансной структуры, регистрацию изменения его параметров, по которым определяют резонансные частоту, амплитуду и добротность резонансной структуры. Зондирующее колебание на входе резонансной структуры формируют двухчастотным с двумя составляющими равной амплитуды со средней частотой и начальной разностной частотой меньшей или равной полосе пропускания резонансной структуры. Резонансную частоту резонансной структуры измеряют в момент времени достижения коэффициентом модуляции огибающей сигнала биений между составляющими зондирующего колебания на выходе резонансной структуры значения 1, как равную значению средней частоты. Вычисляют резонансную амплитуду резонансной структуры и добротность резонансной структуры. Далее, не меняя средней частоты зондирующего колебания, изменяют начальную разностную частоту. После чего измеряют амплитуду огибающей сигнала биений между составляющими зондирующего колебания на выходе резонансной структуры. Устройство содержит перестраиваемый по частоте генератор 1, коммутатор 2, детектор 3, соединенный с контроллером 4 управления и измерения характеристик резонансных структур, а также последовательно соединенные первую линию передачи 5, резонансную структуру 6 и вторую линию передачи 7, причем первый выход коммутатора 2 подключен к входу первой линии передачи 5, его второй вход к выходу второй линии передачи 7, а второй выход к входу детектора 3. Перестраиваемый по частоте генератор 1, коммутатор 2 и контроллер 4 управления и измерения характеристик резонансных структур имеют входы/выходы управления, объединенные в шину управления 8. Дополнительно введен преобразователь 9 одночастотного колебания в двухчастотное, детектор 3, выполнен как детектор огибающей, при этом преобразователь 9 одночастотного колебания в двухчастотное имеет входы/выходы управления, подключенные к шине управления 8, его вход подключен к выходу перестраиваемого по частоте генератора 1, а выход к первому входу коммутатора 2. Технический результат заключается в повышении чувствительности и точности измерений. 2 н.п. ф-лы, 2 ил.

Изобретение относится к оптической измерительной технике и может быть использовано для измерения параметров физических полей. Согласно способу генерируют пару сигналов близкой амплитуды со средней частотой, соответствующей определенной частоте полосы пропускания оптического датчика при заданном значении параметра физического поля и разностной частотой, достаточно узкой, для того чтобы оба сигнала попали в указанную полосу пропускания. Сгенерированную пару сигналов передают к оптическому датчику через оптический разветвитель по первой оптической среде. Принимают пропущенную через оптический датчик и сгенерированную пары сигналов, передаваемые соответственно по второй и третьей оптическим средам. Определение параметра физического поля производят за счет измерения коэффициента модуляции огибающей биений сигналов пары, прошедшей через оптический датчик, и определяя знак разности фаз между огибающей биений сигналов сгенерированной пары и огибающей биений сигналов пары, прошедшей через оптический датчик. Технический результат - повышение точности измерения за счет исключения источников погрешностей измерения. 1 з.п. ф-лы, 3 ил.

 


Наверх