Патенты автора Степанов Степан Игоревич (RU)

Изобретение относится к области медицины, а именно к оперативной травматологии и ортопедии, и раскрывает имплантат для замещения костных трабекулярных дефектов, выполненный в виде тела вращения. Имплантат характеризуется тем, что тело вращения выполнено из пористого материала, выбранного из пористого титана или его сплава, и ограничено поверхностью эллипсоида, при этом эллипсоид имеет размеры по трем ортогональным осям в диапазоне от 5 до 30 мм. Изобретение обеспечивает улучшенную приспособляемость формы имплантата к размерным особенностям конкретного костного дефекта. Поскольку имплантат выполнен из металлического материала, то улучшается его видимость при проведении рентгенографии. Вследствие изготовления его из пористого материала повышается остеокондуктивный эффект. Изобретение может быть использовано для замещения костных дефектов трабекулярной кости в эпиметафизарной области. 1 з.п. ф-лы, 3 ил.

Изобретение относится к области медицины, а именно к травматологии и ортопедии. Имплантат для остеотомии выполнен из металла или сплава и имеет форму призмы с основанием в виде прямоугольного треугольника, содержащего длинный и короткий катеты и гипотенузу. При этом призма содержит совокупность основных каналов, создающих пористость, при этом каналы вытянуты вдоль направления, ортогонального длинному катету и/или гипотенузе. Изобретение обеспечивает улучшение приживаемости и понижение модуля упругости при устранении опасности возможного разрушения имплантата в виде призмы с основанием в виде прямоугольного треугольника, имеющего длинный и короткий катеты и гипотенузу. 4 з.п. ф-лы, 6 ил.

Изобретение относится к области аддитивных технологий, применяемых для изготовления имплантатов, предпочтительно, из титановых сплавов. Ячеистая структура имплантатов выполнена в виде объемной решетки с расположением узлов на поверхности пространственных фигур, соединенных перемычками. Пространственной фигурой является полый шар, имеющий стенку, ограниченную наружной и внутренней сферическими поверхностями. В первом диаметральном сечении сферы выполнены первое и второе сквозные отверстия, имеющие первую общую ось, в плоскости, ортогональной этой оси и под углом 45° к первому диаметральному сечению, выполнены третье и четвертое сквозные отверстия, имеющие вторую общую ось, в той же плоскости выполнены пятое и шестое отверстия, имеющие третью общую ось, которая ортогональна второй общей оси. Отверстия образуют основные сквозные каналы. На поверхности полого шара имеется восемь узлов, расположенных симметрично относительно центра полого шара. В узлах выполнены дополнительные ячейки, сообщающиеся между собой дополнительными каналами. Изобретение позволяет улучить упругие характеристики имплантата.1 з.п. ф-лы, 11 ил.

Изобретение относится к области медицины, а именно к травматологии и ортопедии, и предназначено для использования при изготовлении, с помощью аддитивных технологий, имплантатов предпочтительно из титановых сплавов. Выполняют имплантат, имеющий ячеистую структуру. Ячеистая структура имплантата выполнена в виде объемной решетки с расположением узлов на поверхности пространственных фигур, соединенных перемычками. При этом пространственными фигурами являются полые цилиндры, имеющие толщину стенки, а перемычки представляют собой зоны соприкосновения полых цилиндров по их наружной поверхности, полые цилиндры расположены рядами, при этом в двух соседних рядах оси полых цилиндров ортогональны друг другу. Зоны соприкосновения являются точками соприкосновения либо распространяются на толщину стенки полых цилиндров либо на часть толщины стенок полых цилиндров. Оси полых цилиндров, расположенных в одном ряду, совпадают с осями цилиндров такого же ряда, расположенного после соседнего ряда. Оси полых цилиндров, расположенных в одном ряду, могут быть смещены относительно осей цилиндров такого же ряда, расположенного после соседнего ряда, на величину половины расстояния между полыми цилиндрами. Ячеистая структура выполнена из титана или титанового сплава. Способ выполнения имплантата за счет обеспечения поперечной устойчивости и уменьшения уровня жесткости позволяет улучшить упругие характеристики ячеистой структуры имплантатов. 6 з.п. ф-лы, 4 ил.

Изобретение относится к изготовлению пористых материалов, в частности имплантатов, предпочтительно из титановых сплавов. Способ обработки пористых имплантатов на основе металлических материалов включает подготовку модели ячеистых структур и изготовление ячеистой структуры при воздействии на плавкий материал источником энергии. После изготовления ячеистой структуры ее поры заполняют жидкой средой, охлаждают до температуры ниже температуры фазового перехода среды из жидкого состояния в твердое и подвергают пластической деформации. Затем нагревают до температуры фазового перехода среды из твердого состояния в жидкое и удаляют жидкую среду из пор ячеистой структуры. Обеспечивается повышение прочностных свойств имплантата. 3 з.п. ф-лы, 4 ил., 4 пр.

Изобретение относится к медицине, а именно к количественной оценке степени остеоинтеграции материалов, а также их влиянию на репаративную регенерацию костной ткани. Способ оценки степени интеграции остеозамещающих материалов включает оценку степени интеграции имплантата по рентгеноспектрометрической картине границы «кость – имплантат», при этом методом рентгеновского спектрального микроанализа определяют отношение кальция и фосфора в периимплантной области костного ложа, на основании полученных данных рассчитывают индекс остеоинтеграции , и при ≥ 1 судят о присутствии остеоинтеграции имплантата, при от 1 до 0,5 судят о том, что остеоинтеграция не выражена, а при < 0,5 судят об отсутствии остеоинтеграции, при этом индекс остеоинтеграции рассчитывают по формуле: , где – индекс остеоинтеграции, – процентное содержания кальция, соответствующее i точке в периимплантной зоне, расположенной на удалении 100 мкм от имплантата, – процентное содержания фосфора, соответствующее i точке в периимплантной зоне, расположенной на удалении 100 мкм от имплантата, – процентное содержание кальция, соответствующее j точке в периимплантной зоне, расположенной на удалении 500 мкм от имплантата, – процентное содержания фосфора, соответствующее j точке в периимплантной зоне, расположенной на удалении 500 мкм от имплантата. Использование изобретения позволяет более точно определить степень интеграции остеозамещающих материалов при их имплантации для замещения дефектов костной ткани. 4 ил., 1 табл., 1 пр.

Изобретение относится к области медицины, конкретно к области аддитивных технологий, применяемых для изготовления имплантатов, предпочтительно из титановых сплавов. Описан медицинский имплантат, имеющий пористую структуру, которая содержит набор сфер, соединенных между собой по границам соприкосновения. Каждая сфера имеет полость, не сообщающуюся с атмосферой. Полости выполнены сферическими. Центры сфер и центры полостей совпадают. Пористая структура выполнена из титана или титанового сплава. Конструкция пористой структуры для медицинских имплантатов улучшает упругие характеристики имплантатов за счет возможности дополнительной оптимизации пористости. 3 ил.

Изобретение относится к способу подготовки образцов поствитальной или пострезекционной костной ткани человека для исследования методом растровой электронной микроскопии. Способ характеризуется тем, что образцы вырезают абразивным кругом из костной заготовки, охлажденной жидким азотом, на 5 мин помещают в ультразвуковой диспергатор с ацетоном, далее погружают в заливочную эпоксидную смолу, сушат в вакууматоре в течение 24 ч при 60°C, после высушивания шлифуют шлифовальной бумагой вначале с дисперсностью 800, затем с дисперсностью 1200, далее полируют на сукне с алмазной пастой с зернистостью порошка в пасте 6 мкм и на заключительном этапе подготовки напыляют наночастицами углерода. Достигаемый при этом технический результат заключается в получении высокой контрастности исследуемой поверхности образцов костной ткани человека как материала для исследования в растровом электронном микроскопе, без использования токсичных реагентов при простоте исполнения и снижении материальных, трудовых и временных затрат. 4 ил.

Изобретение относится к химико-фармацевтической промышленности и представляет собой способ производства пористых имплантатов на основе титана или сплава титана ВТ6, включающий подготовку модели ячеистых структур и изготовление ячеистой структуры при воздействии на плавкий материал источником энергии, отличающийся тем, что после изготовления ячеистой структуры ее подвергают пластической деформации, при этом ячеистую структуру изготовляют в виде цилиндра или призмы, ячейки выполняют в виде параллельных каналов, ортогональных основанию цилиндра или призмы, а пластическую деформацию осуществляют путем осадки цилиндра или призмы в направлении, ортогональном основанию цилиндра или призмы. Изобретение позволяет повысить прочностные свойства имплантата с однородным распределением этих свойств по высоте. 3 пр., 4 ил.

Изобретение относится к области металлургии, а именно термомеханической обработке листовых полуфабрикатов из двухфазного титанового сплава для получения низких значений термического коэффициента линейного расширения ТКЛР в плоскости листа, то есть для реализации двухмерного инвар-эффекта в двухфазных титановых сплавах. Способ термомеханической обработки листовых полуфабрикатов из двухфазного титанового сплава с молибденовым эквивалентом от 3,3 до 22% включает горячую прокатку листовых полуфабрикатов и холодную продольно-поперечную прокатку. Горячую прокатку осуществляют при температуре от 500°С до Тпп - 20°С с суммарным обжатием не менее 10%, далее проводят закалку с температуры в интервале от 600°С до Тпп, а последующую холодную продольно-поперечную прокатку листового полуфабриката осуществляют при температуре не выше 300°С с суммарным обжатием от 1 до 30%, где Тпп - температура полного полиморфного превращения используемой плавки сплава. Получают значение ТКЛР не более 5⋅106 К-1 в плоскости листа в интервале температур от -140 до +80°С при прочности более 900 МПа и пластичности более 5%. 3 табл., 1 пр.

Изобретение относится к области металлургии, а именно к способам термомеханической обработки прутков из двухфазных титановых сплавов. Способ термомеханической обработки прутков из двухфазных титановых сплавов с молибденовым эквивалентом от 3,3 до 22% включает закалку прутка и его холодную деформацию. Перед закалкой пруток подвергают горячей деформации при температуре в диапазоне от 500°C до Тпп-20°C с обеспечением аксиальной текстуры β-фазы <110> с полюсной плотностью не менее трех. Закалку прутка осуществляют с температур в диапазоне от 720°C до Тпп с последующей холодной деформацией вдоль оси прутка при температуре не выше 300°C и с относительным удлинением от 1 до 30%, где Тпп - температура полиморфного превращения сплава. Сплав характеризуется низким термическим коэффициентом линейного расширения при высоких значениях прочности и удовлетворительной пластичности. 1 ил., 2 табл., 1 пр.

Использование: для изучения первичной рекристаллизации. Сущность: заключается в том, что осуществляют нагартовку образца и повышение его температуры до температуры прохождения рекристаллизации, при этом к образцу прикладывают постоянную нагрузку, приводящую к упругой деформации, а при повышении температуры фиксируют изменение модуля упругости, находят на зависимости изменения модуля упругости в функции температуры зону повышения градиента модуля упругости, продолжают линию, предшествующую началу зоны смены градиентов модуля упругости, продолжают линию после завершения зоны смены градиентов модуля упругости до пересечения с линией, предшествующей зоне смены градиентов модуля упругости, и идентифицируют абсциссу этой точки с температурой начала рекристаллизации. Технический результат: обеспечение возможности нахождения температуры начала рекристаллизации. 1 з.п. ф-лы, 6 ил.

 


Наверх