Патенты автора Магомедшерифов Нух Имадинович (RU)

Группа изобретение относится к нефтедобывающей промышленности, в частности к технологии водогазового воздействия при разработке нефтяных месторождений. Способ включает получение диспергированной водогазовой смеси, подвод ее через выходной трубопровод к нагнетательной скважине и закачку по колонне насосно-компрессорных труб к забою скважины. Смесь получают подачей под давлением воды в трубу Вентури через конфузор и одновременную подачу под давлением газа в камеру смешения, образованную в диффузоре трубы Вентури, которую осуществляют высокоскоростными струями через газовые сопла, выполненные в корпусе камеры смешения, обеспечивая дробление в воде газовых струй на мелкие пузырьки. Многосопловый регулируемый смеситель содержит камеру подачи газа и расположенную в ней трубу Вентури со сменной насадкой в зоне конфузорно-диффузорного перехода, выполненной с возможностью изменения скорости потока проходящей через нее воды, причем во внутренней расширяющейся полости диффузора трубы Вентури образована камера смешения, в корпусе которой выполнены сменные газовые сопла, которые расположены равномерно по окружности в 3-10 рядов. Дополнительно повышается гидростатическое давление на забое нагнетательной скважины путем закачки мелкодисперсной водогазовой смеси с регулируемым газосодержанием. 2 н.п. ф-лы, 2 ил.

Эжектор предназначен для эжекции газа в поток жидкости в системах поддержания пластового давления. Эжектор содержит входной конфузор 1, диффузор 2 с расположенной между ними щелью эжекции 3, патрубок 4 для подачи газа, сообщающийся со щелью эжекции 3 на входе конфузора 2, в месте соединения его с трубопроводом подачи воды установлена регулировочная муфта 5 с конусной иглой 6, которая может перемещаться вдоль центральной оси конфузора 2. Конусная игла 6 расположена вдоль этой оси и входит в конфузорно-диффузорный переход, изменяя при перемещении площадь его проходного сечения. Регулировочная муфта 5 включает корпус 7 с закрепленными на нем снаружи четырьмя взаимно-перпендикулярными рычагами 8. Внутри корпуса 7 расположена втулка 9, на которой закреплены четыре взаимно-перпендикулярные лопасти 10, в центре пересечения которых выполнено гнездо 11 для установки конусной иглы 6. Корпус 7 имеет внутреннюю резьбу для крепления его на наружной резьбе конфузора 1. Технический результат заключается в обеспечении стабильности работы эжектора в условиях изменяющихся технологических параметров его работы. 1 з.п. ф-лы, 3 ил.

Изобретение относится к нефтегазовой отрасли, в частности к способам автоматического управления системой поддержания пластового давления при водогазовом воздействии на пласт, и может быть использовано для автоматического распределения суммарного потока газа между нагнетательными скважинами. Технический результат – повышение эффективности способа за счет обеспечения устойчивого режима работы скважин в условиях непостоянства поступающего газа. По способу определяют интегральный объем газа для закачки в нагнетательные скважины на основе замеров расхода газа на входе в систему поддержания пластового давления. Определяют суммарный объем газа, подлежащего распределению, по разности интегрального объема закачки и целевых значений расхода газа тех скважин, по которым флаг учета в распределении выставлен нулевым. После этого полученный суммарный объем газа распределяют между теми нагнетательными скважинами, по которым флаг учета в распределении равен единице, пропорционально их весовым коэффициентам, которые получают в результате математического моделирования и промышленных экспериментов, или на основании регламентной документации. При этом осуществляют автоматическую корректировку целевых значений расхода газа для каждой скважины. 1 ил.

Группа изобретений относится к нефтедобывающей промышленности и, в частности, к процессам формирования водогазовой смеси для закачки ее в нагнетательную скважину и может быть использовано для повышения производительности нефтедобычи. Технический результат - обеспечение стабилизации закачки водогазовой смеси в нагнетательную скважину, предотвращение чрезмерного повышения устьевого давления вследствие заполнения скважины газовой фазой. По способу формируют водогазовую смесь для закачки в нагнетательную скважину. Это осуществляют посредством смесителя, который соединяют на входе с трубопроводом воды и трубопроводом газа. Смеситель выполняют с возможностью управляемого снижения входного давления и обеспечения возможности гашения возмущений в системе формирования водогазовой смеси с помощью клапана по газу. Осуществляют измерение давлений воды и газа соответственно в водяной и газовой линиях до и после регулирующих клапанов и контролируют перепады давлений на них для управления расходами воды или газа. Расход газа ограничивают в пределах рабочего диапазона. Для этого сравнивают полученные перепады давлений с заданной величиной минимального перепада давления. Если фактический перепад давления больше заданного минимального, то продолжают поддерживать целевые значения расходов воды и газа. Если фактический перепад давления станет равным или будет меньше заданного минимального перепада давления, то посредством ПИД-регулятора по газу подают управляющий сигнал на клапан по газу для понижения расхода закачиваемого газа. Поддерживают на регулирующем клапане по воде ее закачку в скважину, обеспечивая самонастройку режима работы скважины на закачку водогазовой смеси. Для реализации способа предусмотрена система управления процессом формирования водогазовой смеси для закачки в нагнетательную скважину. 2 н.п. ф-лы, 2 ил.

Изобретение относится к нефтегазодобывающей области, в частности к системе поддержания пластового давления, и может быть использовано для контроля качества мелкодисперсной смеси воды и газа при закачке смеси в пласт через систему поддержания пластового давления. Способ определения режима течения водогазовой смеси включает измерение электродвижущей силы в N точках смеси посредством N датчиков. Измерение проводят с частотой не менее 500 Гц, и по значению тока и замеренной электродвижущей силе определяют значения электропроводности водогазовой смеси в месте установки датчиков, которую затем передают в цифровом виде для построения графиков зависимости электропроводности от времени измерения для каждого датчика. Полученные графики сравнивают с экспериментальными графиками, построенными при известных режимах течения для различных потоков, а по результатам сравнения определяют режим течения водогазовой смеси. Устройство для определения режима течения водогазовой смеси содержит измерительную головку 1, внутри которой по всему периметру поперечного сечения расположены N датчиков, подключенные к блоку обработки результатов измерений 5. Технический результат - повышение точности идентификации режима течения потока водогазовой смеси. 2 н.п. ф-лы, 6 ил.

Изобретение относится к нефтяной промышленности и может быть использовано для утилизации попутного нефтяного газа путем его закачки в нефтяной пласт вместе с водой системы поддержания пластового давления. Обеспечивает повышение эффективности нагнетания газожидкостной смеси. Сущность изобретения: установка включает центробежный насос для перекачки рабочей жидкости без газа, приемные линии для газа и жидкости, две емкости со всасывающими и нагнетательными клапанами, расположенными в верхней части, линиями отбора и нагнетания жидкости, расположенными в нижних частях и сообщенными с выкидом и приемом насоса через симметрично расположенные высоконапорные и низконапорные краны. Согласно изобретению на входной линии для воды параллельно основному центробежному насосу размещен дополнительный насос, напорная сторона которого сообщена с рабочим соплом жидкостно-газового эжектора, приемная камера которого соединена с газовой линией, а выкид - с верхними частями емкостей. На линии входа жидкости в эжектор последовательно расположены регулирующий клапан и дроссель. Запорный орган регулирующего клапана гидравлически сообщен с выкидом эжектора и входом в дроссель. 1 ил.

Изобретение относится к области защиты от коррозии нефтепроводов системы сбора обводненной нефти. Способ включает предварительный сброс основного объема попутно-добываемой воды в аппаратах ее путевого сброса, транспорт нефти по трубопроводу с остаточным содержанием воды до централизованного пункта подготовки нефти, создание в трубопроводе перемещаемой жидкой пробки защитного покрытия, при этом в трубопроводе формируют жидкую пробку раствора нефтерастворимого ингибитора коррозии в обезвоженной перекачиваемой нефти, периодически производят накопление нефтяной фазы в аппарате сброса воды уменьшением количества ее отвода в трубопровод и снижением положения уровня раздела «нефть-вода» в аппарате и по достижении заданного минимального уровня восстанавливают начальное количество отводимой нефти в трубопровод, а в период сброса из аппарата накопившейся нефтяной фазы в нее вводят нефтерастворимый ингибитор коррозии в виде четвертичных аммониевых соединений алкилимидоаминов из расчета не менее 5% объема нефти. Технический результат: повышение эффективности защиты от коррозии. 1 ил.

 


Наверх