Патенты автора Горчаковский Александр Антонович (RU)

Изобретение относится к измерительной технике. Спектрометр ферромагнитного резонанса содержит чувствительный элемент – СВЧ-головку, столик, на котором размещается исследуемый образец тонкой магнитной пленки, кольца Гельмгольца, цифровые блоки формирования сигналов развертки и модуляции, автоматизированную систему позиционирования столика, при этом кольца Гельмгольца подключены к блоку развертки, который является работающим в классе D усилителем, а питание СВЧ-головки осуществляется от управляемого источника питания, включающего соединенные последовательно повторитель, интегрирующий усилитель ошибки, ограничитель напряжения и усилитель тока. Технический результат – повышение точности и скорости измерений, снижение уровня собственных шумов. 5 ил.

Изобретение относится к измерительной технике. Широкополосный датчик переменного тока на тонкой ферромагнитной пленке содержит датчик магнитного поля, помещенный в воздушный зазор кольцевого сердечника, через который проходит как минимум один проводник с током, величину которого необходимо измерить и компенсационную катушку, намотанную на кольцевой сердечник. Новым является то, что в качестве датчика магнитного поля используется высокочувствительный широкополосный датчик слабых магнитных полей на основе микрополосковых резонаторов с тонкими магнитными пленками, причем режим компенсационных измерений этого датчика реализуется за счет обратной связи, осуществляемой с помощью компенсационный катушки, намотанной на кольцевой сердечник, а его ось чувствительности направлена тангенциально окружности кольцевого сердечника. Изобретение обеспечивает повышение чувствительности устройства и расширение полосы частот. 2 ил.

Изобретение относится к измерительной технике. Сущность изобретения заключается в том, что широкополосный высокочувствительный датчик переменных магнитных полей дополнительно содержит схему компенсационных измерений, состоящую из повторителя, фильтра верхних частот, операционного усилителя, сопротивления обратной связи и катушки обратной связи. Выход сумматора подключен параллельно к повторителю и фильтру верхних частот схемы компенсационных измерений, а их выходы подключены к входу операционного усилителя, нагруженного на цепочку из последовательно соединенных сопротивления обратной связи и катушки обратной связи. Выходной сигнал снимается с выхода фильтра верхних частот. Технический результат – компенсация постоянной составляющей сигнала на выходе устройства. 2 ил.

Изобретение относится к измерительной технике. Датчик слабых магнитных полей на тонких магнитных пленках содержит два микрополосковых резонатора, внутри которых находятся тонкие магнитные пленки, амплитудные детекторы, схему суммирования полезных сигналов и компенсации шумов СВЧ-генератора, магнитную систему, предназначенную для формирования постоянного магнитного поля смещения, микроконтроллер, опорный генератор, синтезатор частот, усилители мощности, причем к аналоговым входам микроконтроллера подключены сигналы с двух амплитудных детекторов, а цифровые выходы подключены к синтезатору частот, к входу которого также подключен опорный генератор, а к выходу – усилители мощности, нагруженные на микрополосковые резонаторы. Технический результат – снижение величины дрейфа нулевого значения на выходе устройства. 3 ил.

Изобретение относится к измерительной технике и предназначено для неразрушающего контроля качества и однородности магнитных пленок путем регистрации спектров ферромагнитного резонанса с малых участков исследуемых образцов. Сканирующий спектрометр ферромагнитного резонанса содержит чувствительный элемент – СВЧ-головку, столик, на котором размещается исследуемый образец тонкой магнитной пленки, кольца Гельмгольца, цифровой блок формирования сигнала модуляции, цифровой блок формирования сигнала развертки, систему позиционирования столика, при этом детектирование сигнала осуществляется цифровым квадратурным синхронным детектором, для формирования модулирующего магнитного поля и магнитного поля развертки используются одни общие кольца Гельмгольца, а позиционирование столика полностью автоматизировано. Технический результат – повышение точности измерений, снижение уровня собственных шумов, повышение скорости и снижение трудоемкости измерений. 2 ил.

Цифровой передатчик ближнепольной магнитной системы связи с амплитудно-фазовой манипуляцией предназначен для организации канала связи посредством модулирования низкочастотных магнитных полей. Устройство содержит передающую магнитную антенну с отводами, модулятор с двумя выходами, на первом выходе которого формируется одноразрядный частотно- или фазоманипулированный сигнал, а на втором выходе - цифровой сигнал, соответствующий амплитуде передаваемого символа, при этом первый выход квадратурного модулятора подключен к устройству формирования управляющих сигналов мостового инвертора напряжения, а второй - к управляющему входу мультиплексора, новым является то, что передающая магнитная антенна имеет отводы и, соответственно, мостовой инвертор напряжения имеет несколько соединенных с антенной полумостов, причем общее число выводов передающей магнитной антенны равно числу полумостов и определяется как N=A+1, где А - число дискретных уровней амплитуд символов сигнального созвездия цифровой манипуляции, при этом первый полумост управляется через драйверы по сигналам напрямую от устройства формирования управляющих сигналов, а другие полумосты управляются через мультиплексор. Техническим результатом изобретения является снижение сложности изготовления цифрового передатчика ближнепольной магнитной системы связи. 2 ил.

Изобретение относится к измерительной технике и предназначено для исследования зависимостей магнитного момента образцов тонких магнитных пленок от приложенного к ним поля. Устройство содержит магнитную систему, создающую переменное перемагничивающее магнитное поле, осциллограф, предназначенный для наблюдения и регистрации петель гистерезиса, при этом чувствительным элементом устройства является первый датчик Холла, размещаемый в центре магнитной системы таким образом, что его ось максимальной чувствительности направлена параллельно линиям перемагничивающего магнитного поля, а сверху над ним размещают исследуемый образец, при этом для измерения величины перемагничивающего магнитного поля используют второй датчик Холла, установленный вдали от исследуемого образца, а выходной сигнал, подаваемый на канал Y осциллографа, получают путем вычитания из сигнала первого датчика Холла сигнала второго датчика Холла, одновременно с этим на канал X осциллографа подают сигнал с выхода второго датчика Холла. Техническим результатом заявленного решения является упрощение устройства. 3 ил.

Изобретение относится к измерительной технике и предназначено для регистрации петель гистерезиса тонких ферромагнитных образцов. Устройство содержит систему формирования перемагничивающего поля, осциллограф для наблюдения петли гистерезиса и регистрации ее параметров, новым является то, что в качестве чувствительного элемента используются два датчика Холла, расположенные под исследуемым образцом тонкой магнитной пленки таким образом, что их оси максимальной чувствительности ориентированы перпендикулярно направлению перемагничивающего поля и перпендикулярно плоскости тонкой магнитной пленки, причем сигнал одного из датчиков Холла инвертируется и суммируется с сигналом второго датчика Холла, а третий, дополнительный датчик Холла, используется для измерения величины перемагничивающего поля. Техническим результатом заявленного решения является упрощение конструкции петлескопа для тонких магнитных пленок. 2 ил.

Изобретение относится к области радиотехники, в частности к автоматизированным электрическим испытаниям бортовых ретрансляционных комплексов телекоммуникационных космических аппаратов (КА) в процессе проектирования, производства на заводе-изготовителе, а также при заводских, приемо-сдаточных и предстартовых испытаниях КА. Контрольно-проверочная аппаратура КА наряду с известным содержанием схемы включает векторный анализатор принимаемых сигналов, векторный генератор передаваемых сигналов, цифровой сигнальный процессор и рубидиевый стандарт частоты. Такое решение позволяет проводить комплексную проверку функционирования систем бортового ретрансляционного комплекса КА. При этом обеспечивается контроль работоспособности и измерение характеристик приемного и передающего трактов бортового ретрансляционного комплекса КА. 1 ил.

Изобретение относится к наземным электрическим испытаниям космических аппаратов (КА) в процессе производства КА на заводе-изготовителе, а также при их предстартовых испытаниях. Согласно изобретению в контрольно-проверочную аппаратуру КА дополнительно введены измерители мощности и частоты, а также анализатор спектра принимаемого радиосигнала, приемник с приемной антенной, адресный коммутатор цифровых потоков, управляемые аттенюатор и аттенюатор-делитель, передатчик с передающей антенной. Данные элементы, а также соответствующие связи между ними позволяют проводить комплексную проверку функционирования систем КА, в том числе ВЧ-трактов командной и телеметрической радиолиний. Технический результат изобретения заключается в расширении функциональных возможностей контрольно-проверочной аппаратуры КА за счет обеспечения контроля работоспособности и измерения характеристик приемного тракта командной радиолинии и передающего тракта телеметрической радиолинии КА. 1 ил.

Изобретение относится к области автоматизированных систем управления подвижными объектами, в частности космическими аппаратами (КА), и, более конкретно, к способам защиты командно-измерительной системы космического аппарата от несанкционированного вмешательства, возможного со стороны нелегитимных пользователей - злоумышленников. Технический результат заключается в возможности блокирования команд, полученных от нелегитимного пользователя, в том числе и в защите от несанкционированного вмешательства в работу командно-измерительной системы космического аппарата. Для этого координаты источника сигналов оцениваются и сравниваются с хранимыми в бортовой памяти координатами наземного комплекса управления. При близком совпадении координат принимается решение о легитимности источника сигналов. А при несовпадении координат блокируют команды, полученные от нелегитимного источника сигналов. Таким образом, решается задача защиты командной линии космического аппарата и, в частности, исключения несанкционированного доступа нелегитимных пользователей к командно-измерительной системе КА. 1 ил.

Изобретение относится к медицинской технике. Пульсовый оксиметр содержит блок красного излучателя (1), блок инфракрасного излучателя (2), фотоприемник (3), блок синхронизации (7), блок вычислителя (6) и блок индикации (10). Пульсовой оксиметр дополнительно содержит аналого-цифровой преобразователь (4), оперативное запоминающее устройство (5), постоянное запоминающее устройство (9) и два узла сравнения (81, 82), а блок индикации (10) включает в себя устройство оповещения. Блок синхронизации (7) выходами соединен с блоками красного (1) и инфракрасного (2) излучателей и блоком вычислителя (6). Аналого-цифровой преобразователь (4) входами соединен с фотоприемником (3) и блоком синхронизации (7), а выходом - с одним из входов оперативного запоминающего устройства (5), другой вход которого соединен с выходом блока синхронизации (7). Выходы оперативного запоминающего устройства (5) подключены к входам блока вычислителя (6), к выходу которого подключены блок индикации (10) с устройством оповещения и два узла сравнения (81, 82), каждый из которых выходом соединен с блоком индикации (10), а вторым входом - с постоянным запоминающим устройством (9). Применение изобретения позволит информировать о тенденции снижения уровня насыщения крови кислородом за счет формирования двух сигналов оповещения - предварительного, когда уровень насыщения крови кислородом уменьшился до предела, при котором человек еще не потерял сознание, и основного для информирования окружающих лиц с целью привлечения сторонней помощи. 3 ил.

 


Наверх