Патенты автора Гребенников Владимир Иванович (RU)

Способ обеспечения линейности масштабного коэффициента маятникового широкодиапазонного акселерометра компенсационного типа относится к измерительной технике и может быть использован в области производства приборов для измерения линейного ускорения. В процессе наладки устанавливают акселерометр на центрифугу, задают последовательно ряд линейных ускорений в диапазоне измерения акселерометра, измеряют выходной сигнал акселерометра в зависимости от величины заданного линейного ускорения, корректируют параметры системы, обеспечивая линейность зависимости выходного сигнала от заданного линейного ускорения. Согласно изобретению после измерения последовательности значений зависимости выходной информации Qвых n от заданных линейных ускорений an=g⋅n, где n - значение перегрузки, определяют значения корректирующих коэффициентов Ккорр(n)=Qвых 1⋅n/Qвых n, где Qвых 1 - выходная информация при действии линейного ускорения a1=g, Qвых 1⋅n - значение выходной информации, которое должно было быть получено при условии линейности масштабного коэффициента; посредством внешнего компьютера выполняют аппроксимацию функции Ккорр(n), вводят в память микроконтроллера обратной связи акселерометра данные аппроксимирующего полинома, при эксплуатации акселерометра определяют микроконтроллером частичные отрезки полинома, к которым относятся измеренные акселерометром ускорения, определяют посредством микроконтроллера для измеренных ускорений корректирующие коэффициенты и выполняют корректировку микроконтроллером измеренной выходной информации путем ее умножения на соответствующие корректирующие коэффициенты. Технический результат изобретения – обеспечение линейности масштабного коэффициента широкодиапазонного маятникового акселерометра компенсационного типа. 5 ил.

Способ обеспечения линейности масштабного коэффициента маятникового акселерометра компенсационного типа относится к измерительной технике. Способ основан на использовании цифровой обратной связи, реализуемой микроконтроллером, в котором программным способом реализован ШИМ; ШИМ формирует последовательность рабочих импульсов, длительность которых равна τраб(n⋅T0), а таймер микроконтроллера формирует два равных по величине вспомогательных импульса длительностью τвсп и две равные по величине паузы длительностью τпауз. В способе задается правило выбора длительности интервала рабочего импульса τраб(n⋅T0), длительности вспомогательных импульсов и пауз на «n»-м такте дискретизации, а также правило взаимного размещения на каждом «n»-м такте дискретизации рабочего, вспомогательных импульсов и пауз. В начале каждого «nТ0»-го такта дискретизации размещают первый вспомогательный импульс тока; к этому вспомогательному импульсу тока присоединяют рабочий импульс; через определенный промежуток времени на интервале Т0 размещают второй вспомогательный импульс, при этом знак первого вспомогательного импульса совпадает со знаком рабочего импульса, а знак второго вспомогательного импульса противоположен знаку рабочего импульса. Среднее значение тока Iср, поступающего в обмотку датчика момента, выражается через постоянную по величине амплитуду тока в импульсе Iа, длительность рабочего импульса τраб(nТ0) и период Т0 работы ШИМ, т.е. Iср=Iа⋅τраб(nТ0)/Т0. Произведение Iа⋅τраб(n⋅Т0) - это площадь идеального импульса прямоугольной формы, которая искажается переходными процессами на передних фронтах тока в обмотку датчика момента. Требуемая линейность преобразования может быть достигнута, если в течение периода ШИМ подавать два одинаковых вспомогательных импульса разной полярности, а к одному из них присоединять рабочий импульс длительности τраб(nT0), то переходные процессы не будут искажать площадь рабочего импульса Iа⋅τраб(nТ0), т.к. переходные процессы на передних фронтах импульсов взаимно компенсируются с определенной точностью, а величина среднего за период Т0 тока, поступающего в обмотку датчика момента, будет пропорциональна только длительности рабочего импульса, т.е. измеряемому линейному ускорению. Техническим результатом изобретения является обеспечение линейности масштабного коэффициента маятникового акселерометра компенсационного типа. 1 табл., 6 ил.

Изобретение относится к измерительной технике и может быть использовано в области приборов для измерения линейного ускорения. Сущность изобретения заключается в том, что обеспечивают изменение значения коэффициента передачи регулятора в микроконтроллере от Крег до Kрегmax по закону, для чего на каждом шаге дискретизации выполняют измерение и сравнение в микроконтроллере напряжения U на входе АЦП усилителя с пороговым значением Uпор; при значениях напряжений, меньших либо равных Uпор, для организованного внутри микроконтроллера ШИМ-модулятора формируют в микроконтроллере цифровой входной сигнал для ШИМ-модулятора, для текущего значения напряжения U при значении коэффициента передачи регулятора Крег; обеспечивают формирование ШИМ-модулятором последовательности импульсов постоянной амплитуды и определенной длительности; определяют в микроконтроллере тот шаг дискретизации, на котором U больше Uпор, обеспечивают на последующих шагах дискретизации формирование увеличенного цифрового сигнала U*ув, для увеличенного коэффициента передачи, что обеспечивает увеличение длительности импульсов до определенной величины τув; обеспечивают соответствующее увеличение длительности открытого состояния, определяемого величиной τув, переключателя тока усилителя мощности, что обеспечивает поступление с выхода усилителя мощности в обмотку датчика момента акселерометра последовательности импульсов тока стабилизированной амплитуды и увеличенной длительности, определяют тот шаг дискретизации, на котором на входе АЦП напряжение U меньше либо равно Uпор, после чего обеспечивают возврат системы обратной связи к режиму работы со значением коэффициента передачи, равным Крег. Технический результат – обеспечение виброустойчивости маятниковых акселерометров с цифровой обратной связью при действии линейных ускорений и вибраций любого характера и любой амплитуды, величина которых не была прогнозирована на этапе проектирования прибора. 2 н.п. ф-лы, 6 ил.

Изобретение относится к измерительной технике, а именно к средствам измерения угловых скоростей в системах управления движущимися объектами. Технический результат - расширение функциональных возможностей. Для этого измеритель содержит гироблок, усилитель обратной связи, содержащий предварительный усилитель, фазочувствительный выпрямитель, корректирующий контур с интегратором, выполненным на первом операционном усилителе, усилитель мощности, нагрузочный резистор и источник питания, при этом к обмотке датчика момента гироблока подсоединены термошунты. Корректирующий контур выполнен в виде последовательного соединения интегро-дифференцирующего звена и сумматора, интегро-дифференцирующее звено с зависящей от температуры форсирующей постоянной времени состоит из интегратора и усилительного звена, подключенного параллельно интегратору; усилительное звено состоит из второго операционного усилителя и обратной связи. 6 ил., 2 табл.

Изобретение относится к измерительной технике, и может быть использовано для определения параметров кварцевых маятниковых акселерометров. Согласно способу акселерометр располагают в первом положении на подвижном основании, при котором ось чувствительности пластины акселерометра лежит в плоскости горизонта перпендикулярно горизонтальной оси вращения основания, при этом подают калиброванные по уровню и знаку электрические сигналы Uсм на первый вход устройства обратной связи, для каждого сигнала Uсм измеряют сигнал Uвых на выходе и сигнал U с м ∗ смещения на втором входе устройства обратной связи и определяют зависимость Uвых от U с м ∗ , (статическую характеристику акселерометра «выходной сигнал» - «сигнал смещения»), поворачивают основание на малый угол и повторяют указанные действия, затем вычисляют параметры акселерометра. Техническим результатом является возможность прогнозирования стабильности положения оси чувствительности при смещении центра масс чувствительного элемента из-за дрейфа нуля со стороны входа устройства обратной связи, а также уровня выходного сигнала акселерометра в отсутствие ускорения силы тяжести. 4 ил.

Изобретение относится к измерительной технике и может быть использовано для определения параметров кварцевых маятниковых акселерометров. Согласно заявленному способу в одну из точек замкнутого контура акселерометра подают синусоидальные, калиброванные сигналы Uг. Для всего требуемого диапазона частот и амплитуд сигналов Uг измеряют выходной сигнал смещения Uсм и выходной сигнал Uвых устройства обратной связи и по отношению их амплитуд к амплитуде сигнала Uг определяют динамические характеристики акселерометра. По первому варианту подают сигнал Uг в датчик силы либо через эталонную нагрузку, либо через дополнительный вход усилителя мощности цифрового устройства обратной связи, соединяя свободный вывод эталонной нагрузки с общей шиной, а сигналы Uсм и Uвых измеряют соответственно со стороны выходов следующих элементов цифрового устройства обратной связи: усилителя-преобразователя и интегро-дифференциирующего усилителя. По второму варианту подают сигнал Uг в датчик силы через эталонную нагрузку, а сигнал Uвых измеряют со стороны выхода интегро-дифференциирующего усилителя устройства обратной связи и подают на активный фильтр, с выхода которого измеряют выходной сигнал U в ы х * . Сигнал Uсм измеряют со стороны выхода усилителя-преобразователя устройства обратной связи. Технический результат - повышение точности измерения динамических характеристик акселерометра. 2 н.п. ф-лы, 3 ил.

Изобретение относится к гироскопической и контрольно-измерительной технике и может быть использовано при разработке волоконно-оптических измерителей угловой скорости (ВОИУС). Измеритель содержит два усилителя-преобразователя (УП1 и УП2), формирователь синхронизирующих импульсов (ФСИ), волоконный контур, два фазовых модулятора, установленных на концах волоконного контура, и оптически связанные входной разветвитель, поляризатор и контурный разветвитель, выходами оптически связанный с концами волоконного контура, деполяризатор, приемный модуль (ПМ), источник излучения, выход которого оптически связан через деполяризатор с входом входного разветвителя, фотоприемный модуль (ФПМ), своим фотодиодом оптически связанный с выходом входного разветвителя, фазочувствительный выпрямитель (ФЧВ), а также коммутатор, входами связанный с выходами УП1 и УП2. ВОИУС может быть использован в многоканальном исполнении с произвольно расположенными осями чувствительности. Изобретение обеспечивает снижение энергопотребления при многоканальном исполнении, а также снижение погрешности масштабного коэффициента. 7 ил.

 


Наверх