Патенты автора Шорин Александр Алексеевич (RU)

Изобретение относится к контрольно-измерительной технике транспортных средств с системой питания на постоянном токе. Технический результат изобретения заключается в повышении точности измерений сопротивления изоляции сети постоянного тока, повышении электробезопасности эксплуатации и повышении помехозащищенности. В способе измеряют напряжения и фиксируют результаты измерения напряжения U+, U- между соответствующими положительной и/или отрицательной шинами питания и землей, для этого после полного разряда конденсатора С выключают первый коммутирующий элемент К1, обеспечивавший полный разряд конденсатора С через разрядный резистор RP на "землю", затем включают на фиксированное время t второй коммутирующий элемент К2, обеспечивая заряд конденсатора С от произвольно выбранной шины питания через дополнительное сопротивление RД и соответствующее сопротивление изоляции Ri, в течение заданного времени заряда, после выключения второго коммутирующего элемента К2 заряд конденсатора С прерывают, замеряют напряжение заряда UC конденсатора С и после фиксации результатов измерения включают первый коммутирующий элемент К1 цепи разряда конденсатора С на землю через разрядный резистор RP для приведения измерительной цепи в исходное положение и готовности к повторному измерению, а значения сопротивлений изоляции вычисляют по следующим соотношениям: где: Ri+, Ri- - сопротивления изоляции положительной и отрицательной шин питания соответственно; U+, U- - напряжения на положительной и отрицательной шинах питания относительно "земли" до начала цикла заряда конденсатора С; UC - напряжение на заряженном в процессе измерения конденсаторе; С - емкость конденсатора; t - время заряда конденсатора; RД - сопротивление дополнительного резистора в цепи заряда конденсатора. Далее сравнивают в блоке контроля рассчитанные значения с величинами сопротивлений из предыдущих измерений и, если эти величины не превышают штатных изменений величин, фиксируют эти значения в блоке фиксации параметров до следующего цикла измерения и расчета. 1 ил.

Изобретение относится к контрольно-измерительной технике транспортных средств с электрической тягой на постоянном токе. Технический результат: повышение точности измерений сопротивлений изоляции шин сети постоянного тока, повышение электробезопасности эксплуатации и повышение помехозащищенности. Сущность: устройство автоматического контроля сопротивления изоляции сети питания постоянного тока содержит первый К1 и второй К2 коммутирующие элементы. Вход К1 соединен со входным электродом конденсатора С, а его выход через разрядный резистор RР соединен с выходным заземленным электродом конденсатора С. Входы К2 выполнены с возможностью попеременного соединения с положительной или отрицательной шиной питания, или отключения от сети питания, а его выход соединен через дополнительное сопротивление RД со входным электродом конденсатора С. Средства измерения параметров выполнены в виде соответствующим образом связанных блоков измерений, расчета и фиксации параметров. Блок расчета выполнен с возможностью вычисления значения сопротивлений изоляции Ri+, Ri- по соотношениям: где: Ri+, Ri- - сопротивления изоляции положительной и отрицательной шин питания соответственно; U+, U- - напряжения на положительной и отрицательной шинах питания относительно "земли" до начала цикла заряда конденсатора С; UС - напряжение на заряженном в процессе измерения конденсаторе; С - емкость конденсатора; t - время заряда конденсатора; RД - сопротивление дополнительного резистора в цепи заряда конденсатора. Сравнивают в блоке контроля рассчитанные значения с величинами сопротивлений из предыдущих измерений и, если эти величины не превышают штатных величин, фиксируют эти значения в блоке фиксации параметров до следующего цикла измерения и расчета. 1 ил.

Изобретение относится к области теплотехники и электротехники и предпочтительно может быть использовано как способ управления системой охлаждения тягового электропривода, включающего инвертор и электрическую машину, для электромобилей и автомобилей с КЭУ. Техническим результатом способа является повышение эффективности и быстродействия упреждающей работы системы охлаждения при понижении энергозатрат. Данный результат достигается тем, что система упреждающего управления в жидкостной системой охлаждения (1) тягового электропривода электромобиля включает насос (2) с механическим приводом, обеспечивающим циркуляцию охлаждающей жидкости через радиатор (3), с вентилятором с первым регулируемым электроприводом (4), рубашки охлаждения инвертора (5), имеющим датчик тока (6) в звене постоянного тока, и тягового электродвигателя (7) со встроенным датчиком температуры корпуса (8), отличающийся тем, что приводом насоса является дополнительно установленный второй регулируемый электропривод (9), а сформированный датчиком тока (6), преобразуется квадратичным формирователем (10), при этом сигнал, сформированный датчиком (8) температуры корпуса тягового двигателя, преобразуется первым пороговым усилителем (И) и вторым пороговым усилителем (12) с зоной гистерезиса, также, выходные сигналы, сформированные вторым пороговым усилителем (12) с зоной гистерезиса и квадратичным формирователем (10), суммируются сумматором (13) и в зависимости от состояния коммутатора (14), определяемого уровнем сигнала, сформированного первым пороговым усилителем (11), управляют частотой вращения второго регулируемого электропривода (9) вентилятора радиатора (4), а также суммируются сумматором (15) с сигналом задания минимальной производительности насоса (2), задаваемым формирователем минимального сигнала насоса (16), управляют частотой вращения первого регулируемого электропривода (3) насоса (2). 1 ил.

Изобретение относится к области электротехники и может быть использовано для управления устройством охлаждения силового электропривода. Техническим результатом является: упрощение схемного решения, используемого для реализации системы управления, повышение быстродействия системы управления системой охлаждения и понижение текущих энергозатрат управления путем обеспечения режима работы вентилятора и насоса в соответствии с уровнем энергии, близкому к выделяемой при работе и идущей на нагрев инвертора и силового двигателя. Технический результат достигается тем, что в жидкостной системе охлаждения 1 насосом 2, обеспечивающим циркуляцию охлаждающей жидкости через радиатор 3, с вентилятором с первым регулируемым электроприводом 4, рубашки охлаждения инвертора 5, имеющим датчик тока 6 в звене постоянного тока, и силового электродвигателя 7 со встроенным датчиком температуры корпуса 8, причем приводом насоса является дополнительно установленный второй регулируемый электропривод 9, а сформированный датчиком тока 6 преобразуется квадратичным формирователем 10, при этом сигнал, сформированный датчиком 8 температуры корпуса силового двигателя, преобразуется первым пороговым усилителем 11 и вторым пороговым усилителем 12 с зоной гистерезиса, также выходные сигналы, сформированные вторым пороговым усилителем 12 с зоной гистерезиса и квадратичным формирователем 10, суммируются сумматором 13 и в зависимости от состояния коммутатора 14, определяемого уровнем сигнала, сформированного первым пороговым усилителем 11, управляют частотой вращения второго регулируемого электропривода 9 вентилятора радиатора 4, а также суммируются сумматором 15 с сигналом задания минимальной производительности насоса 2, задаваемым формирователем минимального сигнала насоса 16, управляют частотой вращения первого регулируемого электропривода 3 насоса 2. 1 ил.

Изобретение относится к области электротехники. Техническим результатом является минимизация времени протекания переходных электромагнитных процессов в асинхронном двигателе при минимальных потерях в меди. Предлагается способ управления асинхронным двигателем (АД) с короткозамкнутым ротором, питаемым от силового преобразователя, реализующего векторное управление АД с прямым и обратным преобразованиями Парка и Кларка. Ротор имеет входы сигналов управления составляющих тока статора по оси абсцисс, по оси ординат и сигнала частоты тока статора. Формируют сигнал задания момента, сигнал, пропорциональный частоте вращения ротора, и на базе сигнала задания момента формируют сигнал задания абсолютного скольжения, обеспечивающего минимум потерь в меди. Формируют корректирующий сигнал, который задает составляющую тока статора по оси ординат, который, суммируясь с сигналом задания момента, задает составляющую тока статора по оси абсцисс; суммируясь с сигналом задания абсолютного скольжения и сигналом, пропорциональным частоте вращения ротора, задает частоту тока статора.

Изобретение относится к электротехнике. Технический результат заключается в повышении скорости формирования электромагнитного момента при изменении управляющего сигнала задания момента. Устройство управления содержит асинхронный двигатель. Преобразователь реализует векторное управление с прямым и обратным преобразованиями Парка и Кларка и имеет входы сигналов задания составляющих тока статора по оси абсцисс, по оси ординат и частоты тока статора. А также датчик частоты вращения ротора и задатчик момента. Фазные входы асинхронного двигателя соединены с выходами преобразователя. Вал асинхронного двигателя жестко соединен с датчиком частоты вращения. Выход задатчика момента соединен с входами релейного усилителя-ограничителя абсолютного скольжения, реального форсирующего звена и с первым входом первого сумматора. Выход реального форсирующего звена соединен с вторым входом первого сумматора и с вторым входом второго сумматора. Первый вход сумматора соединен с выходом релейного усилителя-ограничителя абсолютного скольжения, а третий вход соединен с выходом датчика частоты вращения ротора. Входы сигналов задания составляющих тока статора по оси абсцисс, по оси ординат и частоты тока статора преобразователя соединены с выходом первого сумматора, выходом реального форсирующего звена и выходом второго сумматора соответственно. 1 ил.

Изобретение относится к области электротехники, в частности преобразованию солнечной энергии. Технической результат изобретения заключается в повышении эксплуатационных характеристик устройства за счет повышения быстродействия поиска оптимальной рабочей точки. Фотоэлектрическое устройство преобразования солнечной энергии содержит фотоэлектрический преобразователь с клеммами для подключения, силовой ключ, диод и нагрузку, при этом к положительной клемме фотоэлектрического преобразователя подключены анод диода, отличающееся тем, что вход силового ключа подключен к положительной клемме фотоэлектрического преобразователя, а к катоду диода подключен положительный вход DC-DC преобразователя, отрицательный вход которого и выход силового ключа соединены с первым выводом датчика тока, второй вывод датчика тока подключен к отрицательной клемме фотоэлектрического преобразователя, кроме того, выход тактирующего генератора подключен к управляющим входам силового ключа и запоминающего устройства, выход датчика тока соединен с информационным входом запоминающего устройства и входом формирователя ошибки, второй вход которого соединен с выходом запоминающего устройства, а выход формирователя ошибки соединен с управляющим входом DC-DC преобразователя, к выходам которого подключается нагрузка. 1 ил.

Изобретение относится к области электротехники и транспорта и касается, в частности, комбинированных энергетических установок гибридных транспортных средств, оборудованных стартер-генераторами. Предлагаемая стартер-генераторная установка автотранспортного средства содержит обратимую электрическую машину, содержащую статор (1), соединенный с корпусом (2) двигателя внутреннего сгорания, ротор (3), соединенный резьбовыми крепежными элементами с валом (4) двигателя, кожух (5), прикрепленный к корпусу (2) двигателя. Статор подключен электрической цепью к аккумуляторной батарее. Ротор выполнен в виде тороидальной чаши, имеющей на периферии окна (6), разделенные перегородками, образованными длинными криволинейными лопастями (7), (8), расположенными на вогнутой поверхности чаши, обращенной в сторону статора (1). Часть перегородок между окнами в чаше образована длинными лопастями (7), а другая такая же часть перегородок - короткими лопастями (8), размещенными между длинными лопастями (7). К чаше прикреплен обруч (9), окружающий статор (1). В обруч (9) напротив статора вставлено упругое цилиндрическое кольцо (10) из магнитопласта. В кожухе (5) вдоль оси электрической машины выполнены два ряда вентиляционных отверстий (11) и (12), разделенных коническим гребнем (13), выполненным на внутренней поверхности кожуха напротив ротора и выступающим в сторону указанного обруча (9). Технический результат - обеспечение эффективного охлаждения стартер-генераторной установки для соблюдения оптимального теплового режима ее работы. 1 з.п. ф-лы, 2 ил.

 


Наверх