Патенты автора Прошин Владимир Александрович (RU)

Использование: для нанесения покрытий на вакуумной установке с линейным источником ионов. Сущность изобретения заключается в том, что осуществляют распыление мишени на неподвижную тестовую подложку, получают распределение толщины покрытия по поверхности этой подложки и выполняют контроль толщины во время нанесения покрытия на рабочую подложку, при этом перемещением платформы, на которую устанавливают линейный ионный источник и мишень, совмещают середину линии перегиба поверхностного распределения толщины покрытия с центром вращающейся рабочей подложки, наносят покрытие на подложку и одновременно проводят сквозной контроль оптической толщины покрытия как вдоль оси вращения, проходящей через центр подложки, так и на расстоянии от центра подложки, и по разности сигналов, получаемых от контрольных устройств в центре и на расстоянии от центра подложки, корректируют положение линии перегиба распределения толщины относительно оси вращения подложки перемещением платформы с линейным ионным источником и мишенью в процессе нанесения. Технический результат: обеспечение возможности получения однородных многослойных покрытий интерференционных фильтров и зеркал с контролем толщины и однородности многослойных покрытий во время распыления. 4 ил.

Изобретение относится к оптическому приборостроению и касается способа компенсации температурного смещения полосы пропускания интерференционно-поляризационного фильтра. Фильтр содержит стопу регулируемых элементов с полуволновыми пластинками, вращением которых настраивают полосы пропускания регулируемых элементов фильтра на измеряемую спектральную линию объекта. Для компенсации температурного смещения полосы пропускания луч света от опорного источника направляют через каждый регулируемый элемент одновременно со светом измеряемой спектральной линии объекта. Пропущенный элементом луч опорного источника расщепляют на два луча, обыкновенный и необыкновенный, и используют изменение разности интенсивностей этих лучей, вызванное изменением температуры элемента, как сигнал обратной связи для поворота полуволновой пластинки, компенсирующего температурное смещение полосы пропускания элемента. Технический результат заключается в повышении точности и упрощении способа. 2 ил.

Изобретение может быть использовано для крупногабаритных оптических астрономических зеркал, которые нуждаются в осевой и радиальной поддержке, чтобы исключить их деформацию от собственного веса, из-за релаксации внутренних напряжений и изменения ориентации зеркал в пространстве. Система содержит механическую радиальную разгрузку и пневмомеханическую осевую разгрузку, при которой основание зеркала при любых углах наклона прижимается к осевым опорам с силой, равной весу зеркала, создаваемой за счет разрежения воздуха в камере, ограниченной задней поверхностью зеркала, оправой и герметизирующей манжетой. Боковая сторона зеркала разгружена на радиальные опоры через ряд витков эластичного цилиндрического шнура, охватывающих боковую поверхность зеркала поверх манжеты и позволяющих зеркалу свободно перемещаться в осевом направлении. Технический результат - уменьшение искажений поверхности зеркала при любом угле его наклона, положительном или отрицательном, и, как следствие, снижение требований к жесткости материала зеркала, а также обеспечение возможности использования технологической оправы, в которой осуществляется оптическая обработка зеркала, в качестве контрольной в оптическом цехе и рабочей оправы зеркала телескопа. 2 ил.

 


Наверх