Патенты автора Окулов Валерий Леонидович (RU)

Изобретение относится к контрольно-измерительной технике и позволяет исследовать газожидкостные вихревые течения с любым соотношением жидкости и газа. Способ основан на совместном использовании ЛДА и PIV, включающем пропускание через измерительный объем лазерного излучения, проведение измерений с получением полного периода пульсаций, определение на основе полученной информации временного интервала между сериями изображений, по которым вычисляют мгновенные PIV поля скорости, освещение исследуемого вихревого течения когерентным лазерным светом, фиксирование изображений двумя CCD камерами, принимающими отраженный свет, и запись информации в заданном интервале времени. При этом при диагностике вихревого течения, индуцированного вращающимся прецессирующим ядром (ПВЯ), одновременно формируют сигнала скорости и опорные сигналы с помощью пьезокерамических гидрофонов или с помощью прецизионных конденсаторных микрофонов, расположенных в устройстве для реализации способа, непосредственно внутри исследовательского контейнера после завихрителя вдоль по потоку в виде отдельных сопряженных пар, диаметрально расположенных в горизонтальной и вертикальной плоскостях. Технический результат заключается в расширении технических возможностей и уменьшении ошибок, связанных с резким изменением соотношения жидкости и газа в вихревом потоке. 2 н. и 7 з.п. ф-лы, 6 ил.

Изобретение относится к области оптических измерений. Оптический способ измерения поля толщины прозрачной наледи на лопастях ветрогенератора заключается в освещении прозрачной наледи и фиксации видеокамерой изображения искаженного светового кольца, образованного на поверхности под наледью в результате полного внутреннего отражения света на границе раздела наледь-воздух. При реализации способа поверхность лопастей покрывают множеством светоотражающих элементов, которые при освещении наледи образуют на поверхности лопастей множество световых колец. При этом положение каждого светоотражающего элемента на поверхности лопастей четко задано, а также используют модуль синхронизации с движущейся поверхностью, который передает информацию о текущем фазовом положении лопастей в модуль накопления и фазового осреднения результатов. Технический результат изобретения – измерение поля толщины прозрачной наледи на лопастях ветрогенератора с низкой погрешностью измерения. 1 ил.

Изобретение относится к контрольно-измерительной технике и может быть использовано для определения величин расходов фаз в двухфазных потоках, например, при добыче или переработке углеводородного топлива. Способ одновременного определения расходов жидкой и газовой фаз потока газожидкостной смеси включает установку прямоточной вихревой камеры на пути следования потока газожидкостной смеси и попарного расположения внутри нее пьезоэлектрических и дифференциальных датчиков давления. При этом внутри объема вихревой камеры создают условия для прецессирующего вихревого ядра, за счет эффекта прецессии которого и определяют соотношение жидкой и газовой фаз. Технический результат - получение более простого и эффективного способа определения жидкой и газовой фаз в потоке газожидкостной смеси с улучшенными технико-эксплуатационными параметрами, включая точность измерения при всех параметрах и режимах газожидкостной смеси. 4 з.п. ф-лы, 3 ил.

Изобретение относится к контрольно-измерительной технике и позволяет исследовать потоки жидкости и газа. Изобретение основано на совместном использовании ЛДА и PIV. Устройство включает импульсный лазер с энергией импульса не менее 120 мДж, частотой срабатывания не менее 16 Гц, две CCD камеры с частотным разрешением от 8 до 16 Гц, расположенные под углом 30÷120° друг к другу и под углом 15÷60° к оси канала за ротором, оптические призмы, процессор обработки изображений, лазерный анемометр с оптическим зондом, выполненный на аргоновом лазере и процессоре обработки доплеровских сигналов, и персональный компьютер. Способ включает проведение измерений с помощью ЛДА в двух и более точках нестационарного вихревого потока за ротором ветро- или гидроагрегата для определения временного интервала, освещение потока лазерным ножом, фиксирование изображений засеянных частиц двумя CCD камерами и запись через заданный временной интервал, статистическое осреднение мгновенных полей скорости для n=2÷16 моментов времени внутри полного периода пульсаций вихревой структуры Т выборкой полей скорости, полученных с временной задержкой t=0, T, 2Т, … и (m-1)T, где m - число измерений мгновенных полей скорости для статистического осреднения. Технический результат - существенное уменьшение случайной ошибки измерения и практически полное устранение систематической ошибки, связанной с нестационарными изменениями структуры потока. 2 н.п. ф-лы, 2 ил.

 


Наверх