Патенты автора Стрелков Александр Юрьевич (RU)

Изобретение относится к техническим средствам обучения операторов систем управления, а именно, к стендам-тренажерам и предназначено для изучения принципа построения гирополукомпаса. Тренажер содержит блок ввода учебной информации, узел индикации функционирования задатчиков, логический блок, блок имитации движения оси ротора гиромотора и блок индикации правильности ответа. На передней панели тренажера изображена кинематическая схема гирополукомпаса и располагаются органы управления блока ввода учебной информации. Отдельные функциональные элементы передней панели подсвечиваются с помощью узла индикации, блока имитации движения и блока индикации правильности ответа. С помощью блока ввода учебной информации выбирают исходные данные и параметры, определяющие правильное построение систем коррекции гирополукомпаса. Выбранные параметры отображаются на индикаторах узла индикации. В случае правильного ответа движение кинетического момента имитируется с помощью блока имитации движения. Упомянутые блоки соединены определенным образом. Повышается уровень подготовки обучаемых. 3 ил.

Изобретение относится к области навигационного приборостроения и может найти применение в системах автоматического управления, например, летательными аппаратами. Технический результат – повышение точности. Для этого система формирования выходного сигнала блоков демпфирующих гироскопов содержит n блоков демпфирующих гироскопов на каждом из трех измерительных каналов, каждый из блоков состоит из двух датчиков угловых скоростей с одинаковой ориентацией входных осей. Гиромоторы датчиков угловых скоростей подключены к блоку питания через первичные обмотки соответствующих импульсных трансформаторов, вторичные обмотки которых соединены с первым и вторым входами соответствующих блоков контроля вращения гиромоторов, выдающих сигнал отказа при отказе одного из датчиков угловых скоростей, входящих в блок демпфирующих гироскопов. Выходы 2n датчиков угловых скоростей подключены на сигнальные входы блока формирования выходного сигнала, на управляющие входы которого подключены выходы n блоков контроля вращения гиромоторов. Выходной сигнал блока формирования выходного сигнала определяется выражением ,где k = 1, 2, …, n соответствует числу любых нормально функционирующих блоков демпфирующих гироскопов; Uвых - выходное напряжение блока формирования выходного сигнала; Kдуi, Hi, сi, ΔUi - крутизна датчика углов, кинетический момент, жесткость пружины, погрешность измерения i-го датчика угловых скоростей; ωx - входная угловая скорость измерительного канала. Из выражения для выходного сигнала следует, что точность измерения угловой скорости зависит от большого количества конструктивных параметров, которые имеют отклонения от номинальных значений по случайному закону. Поэтому, осредняя сигналы всех ДУС, входящих в БДГ и работающих на один канал измерения, получаем осреднение суммарной погрешности и, следовательно, повышение точности измерения без снижения надежности работы. 3 ил.

Изобретение относится к техническим средствам обучения операторов систем управления, а именно к тренажерам для изучения принципа построения авиагоризонтов. Тренажер содержит блок ввода учебной информации, узел индикации, логический блок, блок имитации движения оси ротора гиромотора и блок отображения правильности решения. На передней панели тренажера изображена кинематическая схема авиагоризонта и располагаются органы управления блока ввода учебной информации. Отдельные функциональные элементы передней панели подсвечиваются с помощью узла индикации, блока имитации движения и блока отображения правильности решения. С помощью блока ввода учебной информации выбирают исходные данные и параметры, определяющие правильное построение систем коррекции авиагоризонта. Выбранные параметры отображаются на узле индикации. На вход логического блока поступают сигналы с блока ввода учебной информации. В зависимости от выходных сигналов логического блока аналоговый коммутатор формирует отображение о правильности построения систем коррекции. В случае правильного ответа движение вектора кинетического момента имитируется с помощью блока имитации движения. Техническим результатом является улучшение усвоения материала при изучении авиагоризонта. 6 ил.

Изобретение относится к точному приборостроению и может быть использовано, например, для построения скважинных приборов (СП) непрерывных малогабаритных гироскопических инклинометров (ГИ) с автономной начальной выставкой (АНВ) в азимуте для определения координат оси симметрии скважин. Гироинерциальный модуль ГИ содержит одноосный гиростабилизатор (ГС), на платформе (9) которого размещены два измерителя ускорений (13, 14) и трехстепенной гироскоп (12), установленный в поворотной раме (ПР) (5), ось подвеса которой перпендикулярна оси стабилизации (ОС). В режиме измерения ПР (5) повернута в положение, при котором вектор кинетического момента гироскопа (12) перпендикулярен оси подвеса платформы (9), а гироскоп (12) используется в качестве чувствительного элемента ГС. В режиме АНВ ОС устанавливают в вертикальное положение по сигналам измерителей ускорений (13, 14), а ПР (5) разворачивают на 90°, превращая гироскоп (12) в двухкомпонентный измеритель угловой скорости. Платформу (9) вращают с постоянной скоростью, измеряют и записывают угол ее поворота и угловые скорости. По полученным данным вычисляется начальный азимут осей платформы (9). Использование ПР (5) позволяет реализовать в одном приборе алгоритмы измерения, основанные на использовании ГС, и алгоритмы АНВ, основанные на измерении горизонтальной составляющей угловой скорости вращения Земли относительно двух осей, что способствует повышению точности определения начального азимута, а следовательно, и точности работы прибора. 4 ил., 3 табл.

Изобретение относится к точному приборостроению и может быть использовано для определения начального азимутального угла скважинного прибора. Техническим результатом является повышение точности определения начального азимута скважинного прибора. Способ определения начального азимута включает измерение ускорения силы тяжести относительно двух взаимно перпендикулярных осей и на основании этих измерений осуществляют горизонтирование осей чувствительности двухканального измерителя угловой скорости (ДИУС), затем осуществляют вращение осей чувствительности ДИУС относительно вертикальной оси. При этом измеряют угол поворота этих осей относительно корпуса прибора и проекций горизонтальной составляющей угловой скорости вращения Земли на оси чувствительности ДИУС. Вычисляют функции невязки, представляющей сумму квадратов разности эталонной и измеренной угловых скоростей на двух наборах измерений, и ее минимизацию по азимуту корпуса. При выставке скважинный прибор (СП) помещают в азимутальный модуль (AM), и вращают его вокруг вертикальной оси до совмещения по угловому положению с корпусом AM. Предложенный способ осуществляется с помощью азимутального модуля, содержащего поворотную платформу (19), на которой жестко установлены два измерителя ускорений (25, 26) и ДИУС (20). При этом оси измерителей ускорений взаимно перпендикулярны между собой и перпендикулярны оси подвеса платформы, а оси чувствительности ДИУС совпадают с осями чувствительности измерителей ускорений. Кроме того, устройство содержит ротор (18) двигателя отработки, кинематически связанный с осью подвеса платформы, на которой закреплен ротор (21) выходного датчика угла, выполненный в виде синусно-косинусного трансформатора, и блок цифровой обработки (23). Ось подвеса платформы (19) параллельна оси симметрии вертикального отверстия корпуса, на фланец которого установлен узел (6) для крепления скважинного прибора (7). Узел крепления (6) скважинного прибора является сменным с целью возможности выставки скважинных приборов различных диаметров. Кроме того, в корпусе (4) выполнено два соосных отверстия (44, 45), ось симметрии ZAM которых перпендикулярна и пересекает ось симметрии вертикального отверстия и совпадает с плоскостью отсчета азимутального угла корпуса AM. При этом в одно соосное отверстие (44) установлен узел азимутальной привязки (3) корпуса СП к корпусу AM, а во второе отверстие (45) входит выдвижная направляющая (40) этого узла. 2 н. и 1 з.п. ф-лы, 8 ил.

Изобретение относится к точному приборостроению и может быть использовано, например, для построения скважинных приборов. Гироинерциальный модуль содержит одноосный силовой гироскопический стабилизатор, на платформе (3) которого размещены два акселерометра (9.1, 9.2) и гироузел, представляющий собой рамку (2) с не менее двумя жестко установленными в ней гиромоторами (1), оси вращения которых параллельны. По оси подвеса платформы (3) установлены системный датчик угла (8) и стабилизирующий мотор, состоящий из не менее двух последовательно соединенных двигателей (6.1, 6.2). Применение не менее двух гиромоторов и не менее двух двигателей позволяет перевести габариты скважинного прибора по диаметру в габариты по длине, а взаимное положение ротора (8.1) относительно статора (8.2) системного датчика угла и статора относительно корпуса выполнено с возможностью обеспечения внешней начальной азимутальной выставки платформы одноосного силового гироскопического стабилизатора гироскопического инклинометра. 2 з.п. ф-лы, 1 ил.

 


Наверх