Патенты автора Одновол Илья Евгеньевич (RU)

Изобретение относится к электроизмерительной технике, а конкретно к измерению электрических параметров двухполюсников, используемых в качестве датчиков физических процессов (температуры, давления, уровня жидких и сыпучих сред и др.) на промышленных объектах, транспортных средствах, а также в системах измерения уровня заправки ракетно-космической техники. Устройство для определения уровня диэлектрического вещества содержит основной и дублирующий датчики уровня, эталон, два идентичных измерительных канала (основной и дублирующий), три идентичных измерителя уровня. Блоки, входящие в состав устройства, и их соединение показаны на фиг.1. Техническим результатом является повышение достоверности измерения параметров датчиков уровня заправки, удаленных с помощью длинной кабельной линии связи от средства измерения, а также повышение надежности устройства, заключающееся в защите от сбойных процессов в устройствах вычислительной техники, и от отказов электронной компонентной базы в измерительном канале. Технический результат обеспечивается троированием и перевязкой определителей уровня при дублированных измерительных каналах, а также применением встроенной системы диагностики, которая выполняет анализ достоверности выполненных измерений, и, в случае если какое-либо измерение не достоверно, выводится признак недостоверности. При этом все измеренные и расчетные значения величин сохраняются в памяти функциональных блоков устройства. 4 ил.

Изобретение относится к электроизмерительной технике, а конкретно к измерению электрических параметров двухполюсников, используемых в качестве датчиков физических процессов (температуры, давления, уровня жидких и сыпучих сред и др.) на промышленных объектах, транспортных средствах, а также в системах измерения уровня заправки ракетно-космической техники. Техническим результатом является повышение надежности и достоверности определения уровня диэлектрического вещества за счет использования дублированного емкостного датчика уровня, исключения влияния паразитной электрической емкости длиной линии связи, защиты от сбойных процессов в устройствах вычислительной техники и отказов электронной компонентной базы в измерительном канале. В способе определения уровня диэлектрического вещества воздействуют синусоидальным напряжением на заданных частотах последовательно сначала на основной, затем на дублирующий емкостный датчик уровня и их эталоны, затем измеряют токи через дублирующий сухой датчик уровня и эталон на каждой из заданных частот, фиксируют результаты измерения, определяют и фиксируют значение электрической емкости дублирующего сухого емкостного датчика уровня, определяют и фиксируют значение приращения электрической емкости дублирующего емкостного датчика уровня при полном его погружении в диэлектрическое вещество. Периодически и последовательно измеряют и фиксируют ток через заполняемый диэлектрическим веществом дублирующий емкостный датчик уровня и эталон на каждой из заданных частот, периодически определяют и фиксируют текущее значения электрической емкости дублирующего емкостного датчика уровня, заполняемого диэлектрическим веществом, определяют уровень, выраженный в виде разности текущего значения электрической емкости заполняемого дублирующего емкостного датчика уровня и электрической емкости дублирующего сухого емкостного датчика уровня, отнесенной к значению приращения электрической емкости полностью погруженного в диэлектрическое вещество дублирующего емкостного датчика уровня. Далее в каждом n-канале определяют значения уровней диэлектрического вещества, измеренные основным и дублирующим емкостным датчиком уровня, причем приоритетным значением уровня принимают значение, определяемое через основной емкостный датчик уровня, при этом значения уровней, измеренные основным и дублирующим емкостным датчиком в каждом канале сравнивают между собой, при превышении полученным результатом сравнения допустимого значения проводят анализ возможных причин, в результате которых возникло превышение, после чего измеренные через основной емкостный датчик уровня значения токов, значение электрической емкости и значение уровня в каждом из n-каналов сравнивают с заданными соответственно диапазонами допустимых значений, в случае выхода измеренных в каком-либо из n-каналов значений токов, электрической емкости или уровня за соответствующие пределы диапазона допустимых значений, измеренные в этом же канале через дублирующий емкостный датчик уровня значения токов, электрической емкости и уровня сравнивают с заданными соответственно диапазонами допустимых значений, определение уровня диэлектрического вещества происходит с учетом значений уровней, измеренных в каждом n-канале. 2 ил.

Изобретение относится к электроизмерительной технике, а конкретно к измерению электрических параметров двухполюсников, используемых в системах измерения уровня заправки ракетно-космической техники. Устройство для измерения уровня диэлектрического вещества содержит эталон, первый вывод которого подключен к первому входу блока переключения, а второй вывод подключен к выходу генератора синусоидального напряжения и к первому измерительному входу устройства. Измерительные входы устройства со второго по (n+1)-й, где n - количество двухполюсников, подключены к входам блока переключения, выход которого через последовательно соединенные преобразователь ток-напряжение, масштабный усилитель и аналого-цифровой преобразователь подключен к входу блока управления измерением, выходы которого подключены к блоку переключения, масштабному усилителю и аналого-цифровому преобразователю, а также к блоку управления по частоте и к вычислителю электрической емкости и вычислителю активного сопротивления. Блок управления измерением подключен к блоку управления режимами, выходы которого подключены к входам блока управления по частоте, вычислителя полного приращения электрической емкости, вычислителя уровня, вычислителя текущего приращения электрической емкости и блока управления переключением, выход которого подключен к блоку переключения. Вычислитель электрической емкости подключен к вычислителю текущего приращения электрической емкости и к вычислителю полного приращения электрической емкости, который подключен к вычислителю уровня. Аналого-цифровой преобразователь подключен к вычислителю электрической емкости и вычислителю активного сопротивления, которые подключены к блоку управления по частоте, выход которого подключен к генератору синусоидального напряжения. Вычислитель текущего приращения электрической емкости подключен к вычислителю уровня, при этом выход блока управления переключением является выходом устройства. При этом в устройство введен второй блок задания схемы замещения, причем выходы первого и второго блоков задания схемы замещения подключены к первому ключу, управляющий вход которого подключен к управляющему входу второго ключа и к блоку управления режимами. При этом выход первого ключа подключен к вычислителю электрической емкости и вычислителю активного сопротивления, который подключен к второму ключу, выход которого подключен к пороговому элементу, который подключен к блоку управления измерением, а выход порогового элемента является выходом устройства и подключен к управляющему входу третьего ключа, который подключен к вычислителю уровня, при этом выход второго ключа и выход третьего ключа являются выходами устройства. Технический результат - повышение надежности измерения. 3 ил.

Изобретение относится к электроизмерительной технике, а конкретно к измерению электрических параметров двухполюсников, используемых в системах измерения уровня заправки ракетно-космической техники. Устройство содержит эталон, который подключен к блоку переключения и к первому измерительному входу устройства, при этом измерительные входы устройства со второго по (n+1)-й, где n - количество двухполюсников, подключены к соответствующим входам блока переключения, выход которого через последовательно соединенные преобразователь ток-напряжение, масштабный усилитель и аналого-цифровой преобразователь подключены к входу блока управления измерением, выходы которого подключены к блоку переключения, масштабному усилителю и аналого-цифровому преобразователю, а также к блоку управления по частоте и к вычислителю электрической емкости и вычислителю активного сопротивления. Причем блок управления измерением подключен к блоку управления режимами, выходы которого подключены к входам блока управления по частоте, блока задания схемы замещения, вычислителя полного приращения электрической емкости, вычислителя текущего приращения электрической емкости, вычислителя уровня и блока управления переключением, выход которого подключен к блоку переключения. Причем вычислитель электрической емкости подключен к вычислителю текущего приращения электрической емкости и вычислителю полного приращения электрической емкости, выход которого подключен к вычислителю уровня. Блок задания схемы замещения подключен к вычислителю электрической емкости и вычислителю активного сопротивления, входы которых подключены к блоку управления по частоте, при этом вычислитель текущего приращения электрической емкости подключен к вычислителю уровня, выход которого, а также выходы вычислителя активного сопротивления и блока управления переключением, являются выходами устройства. При этом в устройство введен формирователь разности токов, который подключен к вычислителю электрической емкости и вычислителю активного сопротивления. Выход аналого-цифрового преобразователя подключен к формирователю разности токов, вход которого подключен к блоку управления измерением, выходы которого подключены к первому и второму ключам, которые соединены последовательно. Первый ключ подключен к первому измерительному входу устройства, а второй ключ подключен к источнику постоянного тока и генератору синусоидального напряжения, управляющий вход которого подключен к блоку управления по частоте. Технический результат устройства - повышение точности измерения. 3 ил.

 


Наверх