Патенты автора Буянов Иван Андреевич (RU)

Изобретение относится к области исследования прочностных свойств изделий на основе профилированного листа (ПЛ) различного назначения из полимерных композиционных материалов (ПКМ). Сущность: проводят испытание на трехточечный изгиб образца листа нагрузкой до близких к разрушающим значениям нагрузки и прогиба и сравнения этих показателей с соответствующими расчетными значениями. На первом этапе испытаний образец ПЛ, установленный на опорных ложементах испытательной оснастки, нагружают линейно распределенной нагрузкой заданного номинала, передаваемой через нагружающую балку и имитирующей эксплуатационную нагрузку для заданного расстояния между опорами, и в течение заданного времени осуществляют контроль состояния листа и его прогиба. При этом считают, что образец выдержал проверку при условии отсутствия визуально наблюдаемых признаков разрушения, а его максимальные деформации/прогиб под действием номинальной нагрузки в течение 5 минут не выше допустимых расчетных значений. Затем на втором этапе образец дополнительно нагружают линейно распределенной нагрузкой заданного номинала, передаваемой через нагружающую балку и имитирующей предельную расчетную величину, в условиях контроля состояния ПЛ и его прогиба. При этом считают, что образец выдержал проверку при условии, что он без визуально наблюдаемых признаков разрушения выдержал максимальную нагрузку в течение 60 минут. Затем на третьем этапе проводят разгрузку нагруженного профилированного листа и осуществляют контроль за состоянием его остаточного прогиба, при этом считают, что образец выдержал проверку при условии, что его остаточные деформации/прогиб не превышают допустимые расчетные значения. По результатам проведенных на трех этапах испытаний делают вывод о работоспобности профилированного листа и изделий на его основе при изгибе в условиях использования по целевому назначению. Сущность: проводят испытание на изгиб образца листа нагрузкой до близких к разрушающим значениям нагрузки и прогиба и сравнения этих показателей с соответствующими расчетными значениями, однако при этом образец ПЛ, установленный на опорных ложементах испытательной оснастки, нагружают линейно распределенной нагрузкой прессового типа, имитирующей эксплуатационную нагрузку для заданного расстояния между опорами, до достижения заданных деформаций в условиях контроля за его состоянием. Считают, что образец выдержал проверку при условии, что он без визуально наблюдаемых признаков разрушения выдержал максимальную деформацию/прогиб в течение 60 минут. По результатам проведенного испытания делают вывод об эксплуатационной работоспобности профилированного листа и изделий на его основе при изгибе в условиях использовании по целевому назначению. Технический результат: повышение точности и оперативности определения механических характеристик профилированных листовых изделий из ПКМ на основе достаточно легко реализуемой на практике методики. 2 н.п. ф-лы, 16 ил.

Изобретение относится к области исследования прочностных свойств изделий на основе профилированного листа (ПЛ) различного назначения из полимерных композиционных материалов (ПКМ). Сущность: проводят испытания образца листа нагрузкой до фактически разрушающих значений нагрузки и прогиба и сравнения этих показателей с соответствующими расчетными значениями, в т.ч. установленными в проектной документации, стандартах, регламентах и(или) технических условиях. На первом этапе испытаний образец ПЛ, установленный на опорных ложементах испытательной оснастки, нагружают распределенной нагрузкой заданного номинала, имитирующей эксплуатационную нагрузку для заданного расстояния между опорами, в течение заданного отрезка времени контролируя состояния листа и его прогиба. При этом считают, что образец выдержал проверку при условии, что его максимальные деформации под действием номинальной нагрузки в течение 5 минут не выше допустимых расчетных значений. Затем на втором этапе образец дополнительно нагружают распределенной нагрузкой заданного номинала, имитирующей предельную расчетную величину, при этом контролируют состояние ПЛ и его прогиба. Считают, что образец выдержал проверку при условии, что он без визуально наблюдаемых признаков разрушения выдержал максимальную нагрузку в течение 60 минут. На третьем этапе проводят разгрузку нагруженного профилированного листа и осуществляют контроль за состоянием его остаточного прогиба, при этом считают, что образец выдержал проверку при условии, что его остаточные деформации не превышают допустимые расчетные значения. По результатам проведенных на трех этапах испытаний делают вывод о работоспособности профилированного листа и изделий на его основе в условиях использования по целевому назначению. Технический результат: повышение точности и оперативности определения механических характеристик профилированных листовых изделий из ПКМ на основе достаточно легко реализуемой на практике методики. 4 з.п. ф-лы, 13 ил.

Изобретение относится к способу изготовления преформы на основе водорастворимой подложки. Техническим результатом является устранение возможности повреждения и изменения конфигурации волокнистой структуры преформы при отделении пришитого основания в процессе изготовления изделия. Технический результат достигается способом изготовления преформы на основе водорастворимой подложки для лопаток компрессора, который включает автоматизированную нашивку армирующего волокна на подложку по TFP-технологии с последующим удалением элементов подложки. При этом в качестве материала подложки используют водорастворимый материал на основе поливинилового спирта - флизелин, а процесс удаления элементов подложки проводят при контроле качества образца преформы до полного растворения и вымывания водой частиц флизелина. 2 з.п. ф-лы, 6 табл., 25 пр.

Изобретение относится к области изготовления преформ изделий -заготовок на основе армирующих волокон, пропитанных полимерными связующими. Изобретение может быть использовано в базовых отраслях промышленности, таких как авиастроение, космическая отрасль, энергетика, судо- и автомобилестроение для производства деталей и их компонентов из полимерных композиционных материалов (ПКМ), которые должны выдерживать экстремальные механические нагрузки, обеспечивая при этом возможность значительной экономии в весе, а также безопасность эксплуатации. Сущность заявляемого способа изготовления преформ для лопаток компрессора газотурбинного двигателя состоит в создании трехмерной структуры из слоев армирующих волокон путем автоматизированной направленной нашивки по TFP-технологии первого слоя к подложке, скрепленным с последующими слоями фиксирующими нитями зигзагообразной строчки, при этом плотность укладки слоев армирующих волокон, характеризуемая расстоянием между слоями, составляет 2,85-3,00 мм или 57-60 условных единиц, при 1 у.е.=0,05 мм, а длина зигзагообразного стежка - шага прошивки фиксирующей нити составляет 7-10 мм при ширине стежка равной 5 мм, а в качестве материала подложки для нашивки отделяемых преформ используют водорастворимый флизелин на основе поливинилового спирта. Техническим результатом изобретения является достижение оптимальных физико-механических показателей эксплуатации лопаток компрессора. 5 з.п. ф-ы, 3 ил., 2 табл.

Изобретение относится к технологиям производства и использования сорбентов, применяемых в том числе для медицинских целей, а именно для экстракорпоральной терапии больных с сепсисом с использованием сорбции биологических жидкостей. Задача изобретения: расширение ассортимента способов эффективного получения и антибактериального применения в составе сорбента ковалентно иммобилизованного лизоцима с отсутствием риска утечки лизоцима в биожидкость (водный раствор, в том числе физраствор, а также плазму крови и цельную кровь (с учетом гемосовместимости сорбента)). Задача решается предлагаемым способом ковалентной иммобилизации лизоцима на аминированную агарозную матрицу, а именно: иммобилизация лизоцима на аминированную агарозную матрицу с получением молекулярного спейсера -NH-C6H12-NH-C5H10-NH-, присоединяющего молекулу лизоцима. В качестве матрицы гемосовместимого сорбента используют промышленно выпускаемые макропористые агарозные матрицы марок Sepharose (Сефароза) (производитель GE Healthcare, США) и WorkBeads (WB) 200 Sec (производитель Bio-Works, Швеция). Иммобилизованный лизоцим в составе полученного сорбента с отсутствием риска утечки лизоцима применяют для снижения бактериальной обсемененности биологических жидкостей посредством лизиса бактериальных клеток с наблюдением результатов лизиса двумя путями: статически со слежением падения оптической плотности или динамически в протоке на сорбционной колонке. 2 н. и 1 з.п. ф-лы, 4 ил., 9 табл., 1 пр.

Изобретение относится к технологиям использования сорбентов, применяемых в том числе для медицинских целей, а именно для экстракорпоральной терапии больных с сепсисом с использованием сорбции биологических жидкостей. Задача изобретения: практическая реализация идеи применения иммобилизованного лизоцима в качестве лиганда в матрице гемосовместимого сорбента для удаления эндотоксинов из биологических жидкостей с отсутствием риска утечки лизоцима в сорбируемую биологическую жидкость (водный раствор, в том числе физраствор, плазму крови и цельную кровь (с учетом гемосовместимости сорбента)). Задача решается предлагаемым способом удаления (сорбции) эндотоксинов из биологических жидкостей с помощью химически (ковалентно) иммобилизованного в аминированной агарозной матрице лизоцима в качестве лиганда. Иммобилизацию лизоцима на агарозной аминированной матрице проводят с получением молекулярного спейсера -NH-C6H12-NH-C5H10-NH-, присоединяющего молекулу лизоцима. 1 з.п. ф-лы, 1 ил., 9 табл.

Изобретение относится к области строительных материалов, а именно для изготовления профилированных изделий из полимерно-композиционных материалов. Устройство для изготовления листовых изделий из полимерно-композитных материалов методом непрерывного формирования содержит последовательно соединенные следующие элементы. Стол, на который подается пленочный термопластичный материал. Блок подготовки, смешения, разогрева и дозирования смеси реактопластичного полимерного материала. Блок гравитационного распределения в смеси материала волокнистых элементов для получения полимерно-композиционного материала. При этом стол снабжен двумя прижимными щетками, ограничителями, блоком нанесения верхнего слоя пленочного термопластичного материала аналогичного нижнему слою, блоком прокатки, включающего два вала, полимеризационной нагревательной камерой, блоком охлаждения и обработки листовых изделий из полимерно-композитных материалов. Техническим результатом изобретения является повышение прочности и долговечности листового изделия, увеличение механических эксплуатационных свойств материала. 1 ил.
Изобретение относится к области строительных материалов, а именно для изготовления профилированных изделий из полимерно-композиционных материалов. Способ изготовления листовых изделий из полимерно-композитных материалов методом непрерывного формирования включает следующие этапы. Подачу пленочного термопластичного материала на стол. Осевое равномерное распределение смеси реактопластичного полимерного материала по всей толщине сплошного покрытия. Гравитационное равномерное распределение в смеси материала волокнистых элементов для получения полимерно-композиционного материала. Нанесение верхнего слоя пленочного термопластичного материала. Равномерное распределение полимерно-композиционного материала по всей толщине изделия методом прокатки. Нагревание полимерно-композиционного материала. Охлаждение листовых изделий из полимерно-композитных материалов. Обрезка по заданной длине листового изделия. Техническим результатом изобретения является повышение прочности и долговечности листового изделия, уменьшение шероховатости, увеличение механических эксплуатационных свойств материала.

Изобретение относится к высокомолекулярным соединениям, в частности к галогенсодержащим ароматическим полиэфирсульфонам, которые могут быть использованы в качестве конструкционных и пленочных материалов с повышенными эксплуатационными характеристиками. Ароматический полиэфирсульфон имеет нижеуказанную формулу, в которой z=20-70. Изобретение позволяет получить ароматический полиэфирсульфон с повышенными показателями огне-, тепло- и термостойкости, а также высокими показателями механических характеристик. 2 пр.

Изобретение относится к области переработки полимеров, точнее к исследованиям и оптимизации режимов формования изделий из полимерных композиционных материалов (ПКМ), изготовленных по технологии типа RTM (ResinToolMolding), LRI (LiquidResinInfusion), RFI (ResinFilmInfusion), конкретнее к исследованиям пропитывания образца ткани, предварительно уложенной в закрытую полость измерительной ячейки установки (стенда) для исследования кинетики пропитывания тканей различной структуры и химической природы в режимах смачивания и фильтрации. Предлагаемая установка для исследований кинетики пропитки образцов тканей жидкими полимерными связующими состоит из резервуара с жидким связующим, устройства для пропитки исследуемого образца связующим и компрессора для создания давления при подаче связующего. Устройство для пропитки представляет собой горизонтальную трубку с отводами, выполненную из прозрачного материала; один конец трубки соединен с резервуаром с жидким связующим для пропитки под давлением, и на этом же конце трубки в отводе установлена газовая емкость для ввода газового пузырька в связующее в трубке; для контроля давления, определяющего скорость движения связующего в трубке, подключен манометр, а для определения скорости движения связующего в устройстве для пропитки установлен прибор для видеофиксации с привязкой к реальному времени перемещения газового пузырька в связующем; во всех отводах трубки к указанным компрессору, резервуару со связующим, газовой емкости, манометру установлены запорные краны. При этом в устройство для пропитки наполнителя связующим дополнительно установлена измерительная ячейка для образца исследуемой ткани между впереди расположенной прозрачной капиллярной трубкой и ловушкой для излишка связующего; измерительная ячейка представляет собой конструкцию из двух прямоугольных металлических плит матрицы и пуансона с облицовкой фторопластом с герметичной плоской прямоугольной щелью между ними для размещения в ней тканного образца с возможностью его внешнего сдавливания пуансоном; отверстия для ввода в герметичную щель ячейки жидкого полимерного связующего и вывода его излишков расположены сбоку на противоположных сторонах плит и снабжены штуцерами для присоединения внешних трубок. Установка выполнена с возможностью регулирования ширины фронта течения связующего путем изменения расположения по периферии образца ткани элементов уплотнения, направляющих связующее в образец. Предлагаемая установка позволяет исследовать кинетику пропитки образцов тканей различных плетений жидкими полимерными связующими в условиях различного давления впрыска связующего. Полученные результаты могут быть использованы при выборе режимов пропитывания и для расчета на прочность пресс-формы полимерного композита при его проектировании. 1 з.п. ф-лы, 4 ил.

Изобретение относится к утилизации и сбору биомассы цианобактерий в открытых и закрытых водоемах и в биореакторах. Предложен макропористый сорбент на основе гранул из сополимеров, которые содержат от двух до трех фрагментов, выбранных из следующих: глицидил метакрилат, аллил глицидиловый эфир, метил метакрилат, стирол, диметакрилат триэтиленгликоля, диметакрилат этиленгликоля, дивинилбензол. Сополимер содержит ковалентно иммобилизованные реагенты, выбранные из диметиламина, или аммиака, или триэтиламина, или этилендиамина, или диэтилентриамина, или полиэтиленимина. Сорбент эффективен для удаления цианобактерий из воды. 10 ил., 1 табл., 22 пр.

Изобретение относится к теплостойким композиционным материалам, которые могут применяться в различных отраслях техники, в частности в авиационной и космической технике, и к способу их получения. Описан термостойкий полимерный композиционный материал, содержащий силоксановый каучук в качестве матрицы и многостенные углеродные нанотрубки (УНТ) в качестве наполнителя в количестве 0,1-1,0 мас.ч. на 100 г мас.ч. матрицы, при этом материал обладает термостойкостью: изменение массы при 400°С не более 3,93%, и физико-механическими свойствами: модуль упругости при растяжении 0,93-3,63 МПа при относительном удлинении 330-505%. Также описан способ получения полимерного композиционного материала. Технический результат: создание нового полимерного композиционного материала с повышенной термостойкостью и улучшенными механическими свойствами на основе силоксанового каучука в качестве матрицы и углеродных нанотрубок в качестве наполнителя. 2 и 4 з.п. ф-лы, 9 ил., 1 табл., 8 пр.

Изобретение относится к сорбентам на основе гранулированных активированных углей, модифицированных полипирролом, используемых в медицине. Предложено два электорохимических варианта способа изготовления сорбента. Согласно первому варианту способ осуществляют в водном электролите с додецилсульфат ионами. Согласно второму варианту способ проводят с неводным растворителем в электролите с хлорид ионами. Полученный сорбент содержит полипиррол, допированный хлорид ионом, который покрывает около 5,0% поверхности гранул угля. Для электрохимически управляемой гемо- или плазмосорбции внешнюю потенциостатическую поляризацию сорбента во время проведения сорбции проводят в диапазоне от -0,2 В до +0,2 В относительно хлорсеребряного электрода сравнения. Скорость прокачивания крови или плазмы крови соответствует скорости естественного кровотока человека, равной около 150 мл/мин. Изобретение обеспечивает возможность удаления из крови или плазмы крови токсичных веществ с различной молекулярной массой и позволяет регулировать процесс удаления этих веществ. 4 н.п. ф-лы, 1 ил., 3 табл.

Изобретение относится к космической технике, в частности к созданию прецизионных антенных рефлекторов с высокоточными отражающими поверхностями сложной геометрии, искривленными в двух измерениях, для эксплуатации в условиях космического орбитального полета. Технический результат - повышение жесткости и температурной размеростабильности, минимизация массы каркаса конструкции космического антенного рефлектора. Для этого каркас конструкции антенного рефлектора включает тонкую оболочку сложной геометрической формы, подкрепленную со своей тыльной стороны ребрами жесткости в виде сетчатой структуры, которая собрана из трех комплектов параллельных ребер жесткости, расположенных относительно друг друга под углами 60 градусов и приклеенных к тыльной стороне оболочки рефлектора. Каждое из ребер имеет пазы, обеспечивающие сборку ребер в единую сетку для последующего склеивания друг с другом и совместно с оболочкой в единое целое, причем продольные плоскости всех ребер ориентированы параллельно фокусной оси рефлектора. При этом сетка выполнена в виде гибридной треугольно-гексагональной структуры, состоящей из трехгранных и шестигранных ячеек, и образована из изогридной треугольной структуры при эквидистантном смещении одного из трех комплектов параллельных ребер, при этом для увеличения узловой жесткости в местах стыка ребер друг с другом полости образованных трехгранных ячеек заливают клеевым компаундом с последующим отверждением. 3 з.п. ф-лы, 6 ил.

Изобретение относится к области полимеров, а именно к области создания многофункциональных нанокомпозиционных материалов, и может быть использовано для получения конструкционных материалов с повышенными механическими и теплофизическими характеристиками, стойкими к агрессивным средам, например, в производстве пластиковых оболочек кабелей электротехнической промышленности, пленочных упаковочных материалов, мешков, тары, пластиковых труб. Способ получения наномодифицированного термопласта включает получение наномодифицированного связующего путем подготовки с помощью ультразвукового воздействия мощностью от 1 до 5 кВт и амплитудой от 20 до 80 мкм концентрата диспергированием частиц наномодификатора в полимерной матрице - смоле и введением полученного концентрата в связующее, после чего с последующим перемешиванием осуществляют получение наномодифицированного термопласта. В качестве полимерной матрицы используют расплав, по меньшей мере, одного термопласта с вязкостью не менее 10 сП в диапазоне температур, обусловленных условиями переработки термопласта в расплавленном состоянии, а именно от 120 до 200°С. Достигаемый технический результат заключается в получении термопластичного полимерного нанокомпозита с повышенным уровнем деформационно-прочностных характеристик. 1 з.п. ф-лы, 6 табл.

Изобретение относится к элементам силовых конструкций, работающих под нагрузкой, и может быть использовано в качестве балок строительных сооружений, перекрытий при строительстве ангаров, траверс опор линий электропередач и т.п. Конструкционный элемент содержит сердечник и армирующие слои из последовательно уложенных с обеих сторон сердечника слоев стеклоткани со скреплением слоев, пропитанных связующим, преимущественно по технологии вакуумной инфузии. В качестве слоев армирующего материала использованы стеклоткани с различной угловой ориентацией волокон по отношению к продольной оси сердечника, слои сформированы в одинаковые пакеты, причем в наиболее нагруженных частях конструкционного элемента каждый пакет образован как минимум из трех слоев разных стеклотканей, а именно: внутренний центральный слой - стеклоткань, выложенная так, что волокна, образующие данную стеклоткань, оказываются уложенными под углами 0° и 90° по отношению к продольной оси сердечника, а остальные слои - внешние по отношению к центральному слою - из мультиаксиальной стеклоткани, выложенной так, что волокна, образующие данную стеклоткань, оказываются уложенными под углами 0°, +45° и -45° по отношению к продольной оси сердечника. В качестве связующего использовано наномодифицированное эпоксидное связующее марки ВСЭ-28, а в качестве материала сердечника - пенополиуретан. Конструкционный элемент обладает повышенной стойкостью к воздействию нагрузок, к воздействию неблагоприятных климатических факторов, обладает уменьшенной массой и технологичен в изготовлении. 3 з.п. ф-лы, 3 ил., 6 табл.

Изобретение может использоваться в многослойных комбинированных покрытиях зеркальных космических антенн с рефлекторами из полимерного композиционного материала - углепластика. Многослойное покрытие содержит три последовательных слоя с равномерной толщиной: нижний зеркальный металлический радиоотражающий скин-слой из чистого алюминия, промежуточный защитный терморегулирующий диэлектрический слой из диоксида циркония и верхний защитный износостойкий высокопрочный алмазоподобный углеродный слой. Технический результат - обеспечение работы в экстремальных условиях открытого космоса за счет использования тонкой подложки-оболочки из полимерного композиционного материала - углепластика. 2 з.п. ф-лы, 1 ил.

Изобретение относится к области аналитики и может быть использовано для исследования и оптимизации режимов формования изделий из полимерных композиционных материалов. Установка для исследования кинетики пропитки волокнистых наполнителей полимерными связующими содержит резервуар со связующим, устройство для пропитки связующим волокнистого наполнителя с окном наблюдения из прозрачного материала и компрессор. Устройство для пропитки представляет собой горизонтальную трубку с отводами, выполненную из прозрачного материала, в которой один открытый конец заполнен исследуемым волокнистым наполнителем, а другой конец соединен с резервуаром со связующим для пропитки волокон под давлением, причем на этом же конце трубки в отводе установлена газовая емкость для ввода газового пузырька в связующее в трубке. Для контроля давления связующего в трубке подключен манометр, а для определения скорости движения связующего в трубке и волокнах установлен прибор для видеофиксации с привязкой к реальному времени перемещения газового пузырька в связующем и волокнах. Во всех отводах трубки к указанным компрессору, резервуару со связующим, газовой емкости и манометру установлены запорные краны. Изобретение позволяет получить точные экспериментальные данные по кинетике течения связующего в образцах волокнистого наполнителя. 2 з.п. ф-лы, 2 ил., 1 пр.

Изобретение относится к элементам силовых конструкций, работающих под нагрузкой, и может быть использовано в качестве элементов опор несущих высоконагруженных вертикальных строительных сооружений, опор мостов, несущих опор линий электропередач, ветровых генераторов и прочее. Длинномерный силовой конструкционный элемент типа вертикальной колонны из полимерного композиционного материала, содержащий пропитанные связующим и уложенные друг на друга слои композиционного материала, образующие непрерывную стенку продольной полости и расположенные по пространственным спиральным кривым, наклоненным к продольной оси полости под постоянным углом не менее 40°. В качестве материала слоев, образующих тонкостенную цилиндрическую или слабоконическую оболочку, использован стеклоровинг, пропитанный наномодифицированным связующим в ходе «мокрой» намотки слоев, соседние слои намотаны друг относительно друга перекрестно относительно продольной оси и под разными углами к продольной оси элемента, а именно поперечно намотанные слои - под углом в диапазоне 40…50°; продольно намотанные слои - под углом в диапазоне 5…10°. Из слоев сформированы два типа чередующихся пакетов, отличающихся по количеству и расположению слоев в них, а именно поперечный пакет из двух поперечно и перекрестно намотанных слоев и продольный пакет из четырех продольно и чередующихся перекрестно намотанных слоев, причем наружный и самый нижний внутренний пакеты композиционного элемента - поперечные. Технический результат - разработка длинномерного силового конструкционного элемента типа вертикальной колонны из полимерных композитных материалов (ПКМ), обладающего уменьшенной массой, технологичного в изготовлении и обладающего высокой стойкостью к воздействию осевых, изгибных и скручивающихся нагрузок, а также неблагоприятных климатических факторов. 2 з.п. ф-лы, 6 табл., 1 пр., 1 ил.
Изобретение относится к эпоксидным композиционным связующим, используемым для производства композиционных материалов, например стеклопластиков и углепластиков, изготавливаемых методами вакуумной инфузии и RTM, широкого спектра применения, например, в авиационной, аэрокосмической, судостроительной, автомобильной и других отраслях промышленности. Эпоксидное связующее для полимерных композиционных материалов включает эпоксидную диановую смолу, разбавитель и отвердитель. В качестве разбавителя используют фурфуролацетоновую смолу, а в качестве отвердителя - триэтаноламинтитанат, при следующем соотношении компонентов связующего, мас.ч.: эпоксидная диановая смола - 100; фурфуролацетоновая смола - 5…50; триэтаноламинтитанат - 5…15. Техническим результатом изобретения является создание связующего на основе эпоксидной композиции, обладающего повышенными эксплуатационными характеристиками, в частности пониженной вязкостью и высокой термостойкостью, которое может быть эффективно использовано при производстве композиционных материалов, изготавливаемых методами вакуумной инфузии и RTM. 1 пр., 2 табл.
Изобретение относится к области получения композиционных материалов на основе смол, диспергированных наномодификатором - углеродными нанотрубками (УНТ), которые могут быть использованы для введения в высоковязкие основы при получении полимерных композиционных материалов широкого спектра применения. Способ получения связующего включает введение в основу наномодификатора - углеродных нанотрубок с последующим ультразвуковым диспергированием наномодификатора в основе, причем в качестве основы используют фурфуролацетоновую смолу, углеродные нанотрубки вводят в основу в количестве 0,001-30 мас.%. При этом перед введением в основу углеродные нанотрубки обезвоживают, а процесс ультразвукового диспергирования ведут при комнатной температуре во временном диапазоне от 5 минут до 12 часов. Причем при осуществлении способа не требуется использование растворителя. Результатом является обеспечение равномерного распределения УНТ по объему основы материала, в который вводят данное связующее, и сокращение времени получения этого связующего. 1 пр.

Изобретение относится к приспособлениям для регистрации сигналов с набора волоконно-оптических брэгговских датчиков системы встроенного неразрушающего контроля (ВНК) объекта. Устройство оптической идентификации измерительных каналов системы встроенного неразрушающего контроля на основе волоконно-оптических брэгговских датчиков содержит источник оптического излучения, трехполюсный оптический разветвитель, опорную брэгговскую решетку с известной характеристикой длины волны отраженного излучения, несколько измерительных каналов с измерительными волоконными брэгговскими решетками, размещенными на объекте контроля, систему изоляции опорной решетки от внешних возмущающих воздействий, в том числе систему термостабилизации; фотоприемное устройство (ФПУ) и блок регистрации и преобразования сигналов, который соединен с ЭВМ. Причем адресные опорные решетки с неповторяющимися характеристиками длин волн отраженного излучения по одной встроены в каждый измерительный канал. Все опорные решетки размещены в корпусе с системой изоляции от внешних возмущающих условий. В качестве непрерывного широкополосного источника оптического излучения использован суперлюминесцентный диод (СЛД). Дополнительно есть оптический изолятор и оптический переключатель, причем оптический изолятор установлен между выходом источника и входным полюсом трехполюсного разветвителя, один выходной полюс которого соединен с общим входом оптического переключателя. Каждый подключаемый выход оптического переключателя соединен со своим измерительным каналом. Другой выходной полюс разветвителя соединен с входом ФПУ и блока регистрации и преобразования сигналов. Технический результат - одновременное существенное упрощение схемы устройства с гарантированным обеспечением надежности идентификации (адресации) измерительных каналов, подключаемых к ЭВМ, и увеличение динамического диапазона измеряемых оптических сигналов. 1 ил.

Изобретение относится к литейному производству. Устройство содержит разъемный полый корпус, в котором посредством проставок образован литниковый капал. Корпус образован разъемными боковыми стенками, верхней и нижней крышками, прикрепленными к боковым стенкам. Проставки в корпусе установлены с возможностью съема. Сверху или снизу относительно каждой проставки установлен ограничитель, имеющий возможность возвратно-поступательного перемещения относительно проставки. В верхней крышке предусмотрены элементы, один из которых предназначен для соединения литникового канала с емкостью для материала образцов, а другой - для соединения литникового канала с вакуумным насосом. Обеспечивается получение качественных образцов без брака и без дополнительной их обработки. 2 з.п. ф-лы, 5 ил.

Изобретение относится к области изготовления полимерных нанокомпозитов, которые могут быть использованы в качестве конструкционных материалов в космической, авиационной, строительной и других отраслях промышленности. Способ включает приготовление наносуспензии путем введения в реактопластичное связующее углеродных нанотрубок при ультразвуковом воздействии с интенсивностью в кавитационной зоне в пределах от 15 до 25 кВт/м2. Причем диспергирование углеродных нанотрубок в связующем осуществляют с одновременной фоторегистрацией изменений интенсивности окраски наносуспензии. При достижении наносуспензией значений интенсивности окрашивания, соответствующих значениям нормированной степени диспергирования в диапазоне от 0,9 до 0,99, ультразвуковое воздействие прекращают. Способ позволяет оптимизировать степень диспергирования углеродных нанотрубок в связующем и сократить время изготовления нанокомпозитов, обладающих повышенной прочностью за счет равномерного распределения наночастиц в нанокомпозите. 3 ил.

 


Наверх