Патенты автора Федоров Сергей Вольдемарович (RU)

Изобретение относится к измерительной технике. Способ получения акустической информации для мониторинга технологического процесса поверхностного легирования керамического и твердосплавного инструмента заключается в присоединении к обрабатываемому объекту волновода, закреплении на волноводе датчика колебаний и обработке информации с помощью компьютера, регистрации значений сигналов в двух частотных диапазонах до момента падения амплитуды сигналов до уровня фоновых шумов. Затем выделяют огибающие, которые растягивают во времени. Для более низкочастотного диапазона выбирают частоту несущего гармонического сигнала в пределах нижней части диапазона аудиального восприятия, а для другого диапазона выбирают частоту несущего сигнала в более высоком частотном диапазоне. В качестве частотных диапазонов выбирают те частотные диапазоны, в которых по экспериментальным данным амплитуда сигнала подвергается наибольшим изменениям при вариации режимов облучения. Новые огибающие используют в качестве модулирующих функций для соответствующих выбранных несущих сигналов. Модулированные сигналы раздельно усиливают и подают в наушники. Датчик выполнен в виде акселерометра с частотной характеристикой, охватывающей слышимый и ультразвуковой частотные диапазоны. Технический результат - сокращение времени освоения технологии обработки материалов и повышение точности настройки режимов работы оборудования. 4 ил.

Изобретение относится к области машиностроения, в частности к микротекстурированию поверхностного слоя керамических пластин электроэрозионной обработкой, и может быть использовано на заключительном этапе изготовления сменных многогранных керамических пластин на основе α/β-модификаций спеченного сплава SiAlON. В способе на поверхности керамической пластины формируют электропроводное многокомпонентное нитридное покрытие вакуумно-дуговым испарением катодов на основе титана, хрома, алюминидов титана и силумина и конденсацией испаряемого материала на поверхность пластин в азотоаргоновой газовой смеси. После осуществляют электроэрозионную прошивку текстуры в виде микроуглублений на быстроизнашивающихся при эксплуатации участках керамической пластины, при этом используют электрод-инструмент, выполненный в виде скрепленных механически и скрученных нитей вольфрама. Электроэрозионную прошивку осуществляют при силе рабочего тока 1,0 А, частоте импульсов тока 20 кГц, рабочем напряжении 70-108 В, межэлектродном зазоре 0,005-0,006 мм в среде диэлектрика с добавкой 30 г/л мелкодисперсных частиц оксида циркония. Техническим результатом является повышение стабильности протекания процесса электроэрозионной обработки керамических пластин, увеличение износостойкости и снижение шероховатости поверхности обработанных керамических пластин. 4 ил., 1 табл., 1 пр.

Изобретение относится к метрологии, в частности к способам метрологической оценки процессов, возникающих при термической обработке металлов. Способ вывода звуковой информации о технологическом процессе заключается в присоединении к обрабатываемому объекту гибкого волновода, закреплении на волноводе акселерометра и обработке информации с помощью компьютера. Сигнал акселерометра регистрируют в виде временных зависимостей текущих значений сигналов в двух частотных диапазонах от начала воздействия до момента падения амплитуды сигналов до уровня фоновых шумов. Выделяют огибающие полученных зависимостей, которые растягивают во времени в 50 и более раз. В качестве частотных диапазонов, в которых регистрируют временные зависимости текущих значений сигналов с акселерометра, выбирают те диапазоны, в которых по экспериментальным данным эффективная амплитуда сигнала подвергается наибольшим изменениям от импульса к импульсу, новые огибающие используют в качестве модулирующих функций для соответствующих выбранных несущих сигналов, модулированные сигналы дифференцированно усиливают и раздельно подают на двухканальное звуковоспроизводящее устройство для воздействия на правое и левое ухо оператора соответственно. Технический результат - сокращение времени и повышение точности настройки режимов работы технологического оборудования. 4 ил.

Изобретение относится к машиностроению. Способ мониторинга структурных, фазовых и химических преобразований в приповерхносном слое обрабатываемых объектов в вакуумных камерах под воздействием электронно-пучковых импульсов заключается в присоединении к обрабатываемому объекту гибкого волновода, выходящего за пределы вакуумной камеры через вакуумный ввод, закреплении на волноводе акселерометра и обработке информации с последнего с помощью компьютера. Полученный с акселерометра сигнал регистрируют в виде временных зависимостей текущих значений сигналов в двух или более частотных диапазонах от начала воздействия до момента падения амплитуды сигналов до уровня фоновых шумов. Затем выделяют огибающие полученных зависимостей, которые растягивают во времени в 50 и более раз, формируя новые огибающие. Для каждого частотного диапазона выбирают частоту несущего сигнала в пределах от 50 до 1000 Гц, соотношения между частотами для разных диапазонов выбирают такими же, которые присутствуют между средними геометрическими значениями частот в выбранных частотных диапазонах для исходного сигнала. Новые огибающие используют в качестве модулирующих функций для соответствующих несущих сигналов, модулированные сигналы суммируют, усиливают и подают на звуковоспроизводящее устройство, воздействующее на органы слуха оператора. Технический результат - сокращение времени освоения технологии обработки новых материалов и повышение точности настройки режимов работы технологического оборудования, повышение качества продукции электронно-пучковой обработки. 5 ил.

Изобретение относится к области обработки резанием деталей из недиэлектрических материалов и может быть использовано для диагностирования состояния режущего инструмента, оснащенного сменными режущими пластинами из недиэлектрического материала по главной задней поверхности. Способ включает в себя формирование электрического потенциала в электрической схеме, работающей по принципу полуискусственной термопары, включающей в себя режущую пластину и обрабатываемую заготовку, по возникновению которого определяют предельно допустимый износ. При этом на опорную и заднюю поверхности режущей пластины с учетом величины предельно допустимого износа предварительно наносят трехслойное покрытие, имеющее диэлектрические внешние слои и токопроводящий центральный слой, который включают в электрическую схему для формирования упомянутого электрического потенциала. Использование изобретения позволяет расширить технологические возможности способа диагностирования состояния режущего инструмента и повысить достоверность диагностирования. 3 ил.

Изобретение относится к области машиностроении, в частности к получению износо-, ударо-, тепло-, трещино- и коррозионностойких покрытий, а также к химико-термической обработке поверхности, и может быть использовано для повышения надежности и долговечности широкого ассортимента деталей машин из титановых сплавов. Способ формирования на изделии из титанового сплава приповерхностного упрочненного слоя включает распыление на поверхность изделия пленки из никелевого сплава, содержащего бета-стабилизирующие добавки, и обработку указанной пленки посредством импульсного электронно-лучевого воздействия. Затем проводят отжиг для инициации процесса дисперсионного твердения за счет образования в приповерхностном слое интерметаллидных фаз. Обеспечивается повышение качества формируемого поверхностного упрочненного слоя за счет создания на поверхности изделия слоя, содержащего бета-титан и интерметаллидные фазы. 4 з.п. ф-лы, 3 ил., 1 пр.

Изобретение относится к способу формирования на поверхности изделия из алюминиевого сплава износостойкого слоя и может быть использовано для повышения надежности и долговечности широкого ассортимента деталей машин из алюминиевых сплавов. Способ включает формирование упомянутого слоя магнетронным распылением в вакуумной камере. На поверхность алюминиевой основы магнетронным распылением наносят титановый слой в виде пленки толщиной от 0,2 мкм до 0,4 мкм. Затем формируют упрочняющие интерметаллидные фазы системы Ti-Al путем жидкофазного перемешивания титанового слоя с приповерхностным слоем алюминиевой основы посредством широкоапертурного электронного пучка плотностью энергии 4,2-4,4 Дж/см2. Процесс идет за счет возбуждения химической реакции между алюминием, присутствующим в основе, с титановой пленкой на его поверхности, нанесенной в виде покрытия, в режиме теплового взрыва путем импульсного нагрева поверхности при помощи низкоэнергетического сильноточного электронного пучка. 3 ил., 1 пр.

Изобретение относится к в способу мониторинга структурных, фазовых и химических преобразований в приповерхностном слое обрабатываемых объектов в вакуумных камерах под воздействием электронно-пучковых импульсов и может быть использовано для повышения надежности и долговечности широкого ассортимента деталей машин. Технический результат заключается в повышении точности настройки аппаратуры, определяющей параметры импульсов электронного пучка воздействующего на объект. К обрабатываемому объекту присоединяют волновод, выводят его за пределы вакуумной камеры через вакуумный ввод и закрепляют на волноводе датчик колебаний. Осуществляют обработку информации с помощью компьютера. В качестве волновода используют гибкую проволоку, в качестве датчика колебаний используют акселерометр с частотной характеристикой, охватывающей частотный диапазон до 100 кГц. В процессе воздействия импульса электронного пучка регистрируют зависимости текущих эффективных значений сигналов, поступающих с акселерометра, от времени в двух частотных диапазонах до момента падения амплитуды сигналов до уровня фоновых шумов. В качестве частотных диапазонов выбирают октавную полосу с наибольшим эффективным значением амплитуды сигнала и соседнюю более высокочастотную октаву, определяют период времени «Т», в течение которого амплитуда сигнала превышала фоновое значение, вычисляют эффективное значение сигнала «А» на всем периоде «Т», оценивают энергию «U» сигнала по формуле: U=A2T (1) и по величине «U» судят о достаточности энергии электронно-лучевого импульса и о результатах произошедших фазовых превращений. 4 ил., 1 пр.

Изобретение относится к области машиностроения. Сущность изобретения заключается в том, что способ мониторинга структурных, фазовых и химических преобразований в приповерхностном слое обрабатываемых объектов в вакуумных камерах под воздействием электронно-пучковых импульсов дополнительно содержит этапы, на которых в качестве волновода используют гибкую проволоку, в качестве датчика колебаний используют акселерометр с частотной характеристикой, охватывающей частотный диапазон до 100 кГц, в процессе воздействия импульса электронного пучка регистрируют зависимости текущих эффективных значений сигналов, поступающих с акселерометра, от времени в двух частотных диапазонах до момента падения амплитуды сигналов до уровня фоновых шумов, в качестве частотных диапазонов выбирают октавную полосу с наибольшим эффективным значением амплитуды сигнала и соседнюю более высокочастотную октаву, сравнивают полученные временные зависимости эффективных значений сигналов с экспериментально полученными эталонными зависимостями и по результатам сравнения судят о достаточности энергии электронно-лучевого импульса или результате протекания фазового превращения. Технический результат – повышение точности настройки аппаратуры, обеспечение производительности электронно-пучковой обработки. 4 ил.

Изобретение относится к гидроструйной обработке изделий из режущей керамики. Осуществляют воздействие струи жидкости на обрабатываемую поверхность со скоростью V=5,8868⋅e0,0015⋅HV±7%, где HV - твердость обрабатываемого изделия по Виккерсу. В результате снижается шероховатость поверхности изделия. 1 з.п. ф-лы, 2 табл., 5 ил.

Способ выбора инструментального материала заключается в поочередном силовом воздействии индентора из предназначенного для обработки материала на поверхность образцов инструментальных материалов при их взаимном перемещении. При этом силу воздействия монотонно увеличивают до момента появления на образце следов схватывания с материалом индентора, а в качестве приемлемого выбирают материал образца, появление следов схватывания на котором соответствует наибольшей силе воздействия. Достигается упрощение процесса выбора инструментального материала. 1 табл., 2 ил.

Изобретение относится к области упрочняющей обработки материалов, в частности к способам химико-термической обработки изделий путем нанесения металлосодержащих покрытий различного назначения. Способ включает химико-термическую обработку изделия, изготовленного из материала, способного к насыщению неметаллами 2-го периода с образованием твердого раствора неметаллов 2-го периода и их неустойчивых соединений, при этом сначала поверхностный слой насыщают неметаллом 2-го периода и напыляют на поверхность металлы IV-V групп, после чего инициируют реакцию самораспространяющегося высокотемпературного синтеза металлов IV-V групп с неметаллами 2-го периода путем импульсного нагрева поверхности изделия до температуры Т, которую выбирают из следующих условий: Т>Ти; Т>Тд, где Ти - температура инициирования реакции самораспространяющегося высокотемпературного синтеза между металлами IV и V групп и неметаллами 2-го периода; Тд - температура диссоциации неустойчивых соединений неметаллов 2-го периода с материалом изделия. Технический результат заключается в повышении качества обработки изделия. 1 з.п. ф-лы, 2 ил.

Изобретение относится к области обработки металлов резанием и может быть использовано для определения оптимальной скорости резания при работе на выбранном технологическом оборудовании. Согласно изобретению осуществляется предварительная обработка заготовки при разных скоростях резания с записью сопровождающих вибраций и с последующим выделением посредством полосовых фильтров высокочастотной и низкочастотной составляющих вибраций и определением амплитудных значений указанных составляющих. За величину оптимальной скорости резания принимают значение скорости, при которой отношение упомянутых значений амплитуд высокочастотной составляющей к низкочастотной минимально. 3 ил.

Изобретение относится к области металлургии, в частности к технике вакуумно-плазменного напыления путем нанесения металлосодержащих покрытий на изделия из твердых сплавов. Способ включает распыление на рабочую поверхность изделия из твердого сплава слоя из карбидообразующих элементов 4-5 группы. Затем рабочую поверхность облучают электронным пучком с определенными длительностью импульса и плотностью энергии в пучке. Облучение проводят в рабочем газе. После облучения на рабочую поверхность изделия наносят износостойкое покрытие. Техническим результатом заявленного изобретения является исключение трещинообразования на поверхностном слое рабочей поверхности изделия. 2 ил., 1 табл.

 


Наверх