Патенты автора Балаев Эътибар Юсиф Оглы (RU)

Изобретение относится к станкостроению, а именно к устройствам ленточнопильных станков для разрезки различных материалов, и может быть использовано при экспериментальных исследованиях процесса резания на ленточно-отрезных станках. Ленточно-отрезной станок содержит пильную раму, два диска, один из которых приводной, а другой натяжной, расположенные на пильной раме, ленточную пилу, натянутую на упомянутых дисках, стабилизирующие элементы для гашения вибрации ленточной пилы и две направляющие ленточной пилы, разворачивающие ее относительно плоскости заготовки в зоне резания. Каждый из стабилизирующих элементов состоит из осей и установленных на них двух пар роликов, одна из которых металлическая, а вторая капролоновая. Ось роликов является составной. Внутренняя часть оси сообщена с внешней посредством упругих элементов, которые зафиксированы на внутренней части от осевого смещения посредством стопорных втулок, впрессованных на упомянутые цилиндрические ступени внутренней части. Между внутренней и внешней частями оси образуется полость, заполняемая демпфирующей жидкостью. Обеспечивается повышение жесткости и стойкости режущего инструмента за счет снижения вибрации ленточной пилы. 5 ил.
Изобретение относится к способу повышения прочности детали с покрытием. Осуществляют поверхностно-пластическое деформирование путём обкатки деформирующим элементом с одновременным пропусканием через зону контакта деформирующего элемента с обрабатываемой поверхностью детали импульсного электрического тока. Через зону контакта деформирующего элемента с обрабатываемой поверхностью детали пропускают импульсный электрический ток плотностью 1-2·105А/см2 и длительностью 1-2·10-5 с до достижения усилия прижима 5000-10000 Н. Затем при усилии прижима 5000-10000 Н осуществляют сваривание по сопрягаемым поверхностям в месте плотного контакта покрытия и подложки путем пропускания через зону контакта деформирующего элемента с обрабатываемой поверхностью детали импульсного электрического тока плотностью 3-5·105А/см2 и длительностью 3-5·10-5с со скоростью перемещения пятна деформации 1-2·10-3 м/мин при продольной подаче 0,01-0,02 мм/об. В результате повышается адгезионная прочность между покрытием и подложкой, снижаются остаточные напряжения и дефекты вдоль границ раздела покрытие - подложка, а также повышается когезионная прочность. 3 табл., 1 пр.
Изобретение относится к способу повышения прочности детали с покрытием. Наносят промежуточный адгезионный слой между поверхностью детали и покрытием с последующей обработкой детали путем нагрева поверхности детали с покрытием токами высокой частоты до достижения температуры плавления по всей толщине промежуточного адгезионного слоя и выдержкой при данной температуре до полного оплавления промежуточного адгезионного слоя. Осуществляют поверхностно-пластическое деформирование после полного оплавления промежуточного адгезионного слоя в радиальном направлении при усилии прижима 3100-5000 Н со скоростью перемещения пятна деформации деформирующего элемента при продольной подаче. Скорость продольной подачи равна скорости перемещения детали относительно индуктора, обеспечивающей обработку всей нагретой поверхности за время выдержки. В результате повышается адгезионная прочность между поверхностью детали и покрытием, снижаются остаточные напряжения и дефекты вдоль границ раздела покрытие-подложка, а также повышается когезионная прочность. 1 з.п. ф-лы, 3 табл., 1 пр.

Изобретение относится к станкостроению, а именно к устройствам ленточнопильных станков для разрезки различных материалов, например металлов, и может быть использовано при экспериментальных исследованиях процесса резания на ленточно-отрезных станках. Станок содержит пильную раму, два диска, один из которых приводной, а другой натяжной, расположенные на пильной раме, ленточную пилу, натянутую на упомянутых дисках, стабилизирующий элемент для гашения вибрации ленточной пилы и две направляющие для ленточной пилы, разворачивающие ее перпендикулярно плоскости заготовки в зоне резания и установленные на пильной раме. При этом стабилизирующий элемент состоит из основания, размещенного на пильной раме, и установленного в нем посредством двух подшипников скольжения червяка, имеющего по центру перегородку, разделяющую левостороннюю и правостороннюю винтовые поверхности трапецеидальной формы, при этом левосторонняя и правосторонняя винтовые поверхности сопряжены соответственно с левой и правой зубчатыми рейками, каждая из которых установлена в Т-образные пазы с возможностью осуществления возвратно-поступательных движений вдоль них, а на каждой зубчатой рейке закреплена стойка с зафиксированным магнитом с магнитной энергией 358-414 кДж/м3, при этом магниты установлены одноименными полюсами друг к другу на равноудалённом от полотна пилы расстоянии 2-15 мм. Повышается жесткость и стойкость инструмента за счет снижения вибрации инструмента ленточной пилы и, как следствие, снижение интенсивности звукового излучения пилы в момент резания в самом источнике возникновения звуковых волн, а также повышается КПД. 3 ил., 1 табл.

Изобретение относится к способам, обеспечивающим повышение износостойкости поверхностей металлических деталей за счет изменения состава и структуры их поверхностных слоев, и может быть использовано при изготовлении деталей, работающих в условиях гидроабразивного и кавитационного износа при температурах работы ниже 273 К. Способ получения износостойкого покрытия из высокоэнтропийных сплавов с эффектом памяти формы на детали из стали включает послойное нанесение порошкового материала высокоскоростным газопламенным напылением в защитной атмосфере аргона, причем нанесение первого адгезионного слоя из механически активированного порошка Ni проводят толщиной 50-100 мкм, нанесение второго переходного слоя из смеси порошков FeNi-TiNi, взятых в равном соотношении, проводят толщиной 100-150 мкм, а нанесение третьего слоя осуществляют из высокоэнтропийного сплава с эффектом памяти формы FeNiCoAlXB толщиной 750-850 мкм, где примесный компонент X представляет собой Ti, Та, Nb, Cr или W, при следующем соотношении компонентов в сплаве, ат. %: Fe 40,95-42,96, Ni 28-30, Со 15-17, Al 10-11,5, X 2-2,5, В 0,04-0,05, при этом перед нанесением порошкового материала дополнительно осуществляют подготовку поверхности детали, включающую струйно-абразивную обработку частицами корунда Al2O3 размерами 80-100 мкм под давлением 0,7-0,8 МПа на расстоянии от сопла до обрабатываемой поверхности 250-350 мм, обезжиривание, химическое травление поверхности детали и последующий нагрев поверхности детали токами высокой частоты ТВЧ до 300-400°С, а после нанесения покрытия проводят упрочняющую обработку с последующим отжигом. Техническим результатом изобретения является повышение стойкости к абразивному, гидроабразивному и кавитационному износам, стойкость к усталостному растрескиванию покрытия при температурах работы ниже 273 К. 16 пр., 1 табл.

Изобретение относится к станкостроению, а именно к устройствам ленточнопильных станков для разрезки различных материалов. Ленточно-отрезной станок содержит пильную раму, два диска, расположенные на пильной раме, ленточную пилу, натянутую на упомянутых дисках, стабилизирующие элементы для гашения вибрации ленточной пилы и две направляющие для ленточной пилы. Каждый из стабилизирующих элементов состоит из двух роликов, один из которых металлический, а второй - из капролона. Направляющие установлены единым блоком на пильной раме, при этом каждый стабилизирующий элемент содержит дополнительно установленный на пильной раме поворотный механизм, выполненный с возможностью поворота на угол 45-135° относительно плоскости заготовки в зоне резания. На сопрягаемых поверхностях подвижного и неподвижного элементов дополнительно нарезаны треугольного профиля шлицы высотой от 3 до 5 мм. Оси выполнены ступенчатой формы и свободными концами сообщены между собой посредством соединительной пластины, установленной на расстоянии от торца роликов с возможностью обеспечения смены типоразмеров ленточных пил и зафиксированной на осях за счет стопорных шайб и гаек. В результате обеспечивается повышение жесткости и устойчивости инструмента. 2 ил.

Изобретение относится к способу нанесения наноструктурированных и износостойких покрытий из высокоэнтропийных сплавов с термоупругими фазовыми превращениями методом магнетронно-плазменного напыления. Осуществляют травление поверхности детали низкотемпературной аргоновой плазмой при давлении 150-250 Па в течение 5-10 мин. Затем выполняют очистку поверхности мишени, состоящей из высокоэнтропийного сплава FeNiCoAlX, где Х- примесный легирующий или допирующий компонент в виде Ti, Та, Nb, Cr или W. Мишень содержит компоненты при следующем соотношении, мас.%: Fe - 41-43, Ni - 28-30, Со - 15-17, Al - 10-11,5, X - 2-2,5. Верхний слой мишени распыляют на заслонку в течение 1-2 мин при токе плазмы 150-200 мА с напряжением 370-420 В. Затем удаляют заслонку. Ионно-плазменное напыление покрытия на деталь толщиной 500-700 нм выполняют при давлении 1,5-2,5 Па, токе плазмы 110-130 мА и напряжении 350-450. После этого осуществляют фазообразующий термический отжиг в инертной атмосфере аргона при температуре 573-773 К в течение 40-80 мин. Техническим результатом является повышение стойкости к абразивному, гидроабразивному и кавитационному износам, и стойкости к усталостному растрескиванию покрытия при температурах работы ниже 273 К. 1 табл., 15 пр., 3 ил.

Изобретение относится к станкостроению. Ленточно-отрезной станок содержит пильную раму, два диска, один из которых приводной, а другой натяжной, расположенные на пильной раме, ленточную пилу, натянутую на упомянутых дисках, стабилизирующие элементы для гашения вибрации ленточной пилы и две направляющие для ленточной пилы. Каждый из стабилизирующих элементов состоит из двух роликов. Направляющие установлены единым блоком на пильной раме. Каждый стабилизирующий элемент содержит дополнительно установленный на пильной раме поворотный механизм, выполненный с возможностью поворота на угол 45-135° относительно плоскости заготовки в зоне резания. Поворотный механизм состоит из закрепленного на пильной раме неподвижного и подвижного элементов, соединены между собой посредством болтового соединения. На сопрягаемых поверхностях подвижного и неподвижного элементов дополнительно нарезаны треугольного профиля шлицы высотой от 3 до 5 мм. Оси с установленными на них роликами впрессованы в подвижный элемент и выполнены ступенчатой формы, свободными концами соединены между собой посредством скобы П-образной формы. В результате обеспечивается повышение жесткости и стойкости инструмента. 2 ил.

Изобретение относится к способу повышения прочности детали с покрытием. Осуществляют поверхностно-пластическое деформирование путем обкатки деформирующим элементом с последующим упрочнением покрытия ультразвуковой обработкой упрочняющим элементом. Одновременно с ультразвуковой обработкой осуществляют пропускание высокочастотных одиночных импульсов разряда тока через упрочняющий элемент в зону обработки к поверхности покрытия с частотой импульсных разрядов 22-24 кГц, плотностью тока 1-2⋅105А/см2 и длительностью 1-2⋅10-5 с. В результате повышается адгезионная прочность между покрытием и подложкой. 1 з.п. ф-лы, 2 табл.

Изобретение относится к области машиностроения, а именно к способам нанесения наноструктурированных и износостойких покрытий методом ионно-плазменного напыления на поверхность режущих инструментов. Способ получения износостойкого покрытия режущего инструмента включает нанесение на поверхность режущего инструмента покрытия, содержащего титан, алюминий и ниобий, при этом перед нанесением покрытия поверхность режущего инструмента подвергают ионно-плазменному травлению в вакуумной камере низкотемпературной аргоновой плазмой при давлении 1-3 Па, а после нанесения - фазообразующему термическому окислительному отжигу при температуре 550-650°С в течение 1-2 ч. Нанесение покрытия осуществляют ионно-плазменным напылением при давлении 1-3 Па, токе 150-200 мА с получением покрытия толщиной 100-300 мкм. Наносимое покрытие дополнительно содержит ванадий и диборид титана. Техническим результатом изобретения является повышение износостойкости, стойкости к усталостному растрескиванию покрытия и стойкости к коррозионному разрушению поверхности режущего инструмента. 1 табл., 3 пр.

Изобретение относится к технологиям, обеспечивающим повышение износостойкости режущего инструмента, в частности шнековых сверл, изготовленных из инструментальной стали, за счет изменения состава и структуры их поверхностных слоев. Способ получения износостойкого покрытия на изделии из инструментальной стали включает диффузионное насыщение поверхности легирующими элементами в расплаве, при этом дополнительно в два этапа осуществляют ультразвуковую обработку поверхности изделия с частотой ультразвуковых колебаний упрочняющего элемента 22-24 кГц, с силой его прижима к обрабатываемой поверхности 1000-3000 Н. Первый этап ультразвуковой обработки осуществляют перед диффузионным насыщением поверхности изделия легирующими элементами в расплаве. Второй этап проводят после диффузионного насыщения поверхности изделия легирующими элементами в расплаве. Упомянутый расплав содержит следующие элементы, при следующем соотношении, мас. %: висмут 47-52, никель 4-6, хром 6-8, свинец 38-39. После второго этапа ультразвуковой обработки поверхности изделия дополнительно проводят диффузионное борирование при температуре 900-950 °С и выдержке 2-3 часа в порошковой смеси карбида бора и фторида натрия, при следующем соотношении, мас. %: карбид бора 96-98, фторид натрия 2-4. Обеспечивается повышение стойкости инструмента, а именно повышение микротвердости и износостойкости рабочих поверхностей режущего инструмента. 1 табл., 3 пр.

Изобретение относится к области машиностроения, а именно к способам получения покрытия на поверхности стальных деталей путем переноса высокотемпературным газовым потоком наночастиц. Способ получения покрытия на поверхности детали из стали включает формирование в камере сгорания высокоскоростного распылителя высокотемпературного газового потока путем сжигания топлива в окислителе, подачу в камеру сгорания высокоскоростного распылителя жидкого исходного материала, являющегося источником образования наночастиц, образование, разогрев и перенос высокотемпературным газовым потоком наночастиц и осаждение их на поверхность детали, при этом жидкий исходный материал, являющийся источником образования наночастиц, одновременно используют в качестве топлива для формирования высокотемпературного газового потока, а упомянутый материал представляет собой истинный или коллоидный раствор органических и/или неорганических соединений в органическом растворителе или смеси нескольких растворителей при этом перенос высокотемпературным газовым потоком наночастиц и осаждение их на подложке осуществляют совместно с непосредственно предшествующей им обработкой поверхности детали электрической дугой, создаваемой между двумя вольфрамовыми электродами при постоянном токе прямой полярности силой 30-40 А, напряжении 11-15 В и проходящей по поверхности детали со скоростью перемещения высокоскоростного распылителя установки для напыления на расстоянии между дугой и струей газа с напыляемым порошковым материалом 2-4 мм. Техническим результатом изобретения является повышение адгезионной прочности, повышение когезионной прочности материала покрытия, а также уменьшение пористости покрытия. 3 пр., 2 табл.

Изобретение относится к области машиностроения, а именно к способам получения покрытия на поверхности деталей из цветных металлов путем переноса высокотемпературным газовым потоком наночастиц. Способ получения покрытия на поверхности детали из цветных металлов включает формирование в камере сгорания высокоскоростного распылителя высокотемпературного газового потока путем сжигания топлива в окислителе, подачу в камеру сгорания высокоскоростного распылителя жидкого исходного материала, являющегося источником образования наночастиц, образование, разогрев и перенос высокотемпературным газовым потоком наночастиц и осаждение их на поверхности детали, причем упомянутый материал, являющийся источником образования наночастиц, одновременно используют в качестве топлива для формирования высокотемпературного газового потока, при этом упомянутый материал представляет собой истинный или коллоидный раствор органических и/или неорганических соединений в органическом растворителе или смеси нескольких растворителей, при этом перенос высокотемпературным газовым потоком наночастиц и осаждение их на поверхности детали осуществляют совместно с непосредственно предшествующей им обработкой поверхности детали электрической дугой, создаваемой между двумя вольфрамовыми электродами при переменном токе 35-45 А, напряжении 12-16 В и проходящей по поверхности детали со скоростью перемещения высокоскоростного распылителя установки для напыления на расстоянии между дугой и струей газа с напыляемым порошковым материалом 2-4 мм. Техническим результатом изобретения является повышение адгезионной прочности, повышение когезионной прочности материала покрытия, а также уменьшение пористости покрытия. 3 пр., 2 табл.

Изобретение относится к технологии 3D-печати деталей из металлического порошка. Послойное аддитивное наращивание включает получение слоев путем нанесения порошка, его выравнивания, уплотнения и обработки лазером. Первый слой выполняют из смеси порошков WC, TiC, TiNiCu и Со. Формирование второго слоя происходит в три этапа. На первом этапе осуществляют формирование контура слоя детали толщиной, равной 0,2 части от общей толщины стенки полой детали или 0,1 части толщины сплошной по сечению детали, выполненного из смеси порошков WC, TiC, TiNiCu и Со. На втором этапе осуществляют формирование среднего контура слоя детали толщиной, равной 0,2 части от общей толщины стенки полой детали или 0,1 части толщины сплошной по сечению детали, выполненного из порошка с эффектом памяти формы TiNiCuMo. На третьем этапе осуществляют формирование внутреннего контура слоя детали толщиной, равной 0,6 части от общей толщины стенки полой детали или 0,8 части толщины сплошной по сечению детали, выполненного из порошка стали 65. Формирование третьего и последующих слоев детали осуществляют аналогично второму слою детали. Обеспечивается повышение вибростойкости, усталостной прочности и износостойкости детали, представляющей собой слоистый композит. 2 табл., 1 пр., 1 ил.

Изобретение относится к получению детали из металлического порошкового материала. Установка содержит камеру, в верхней части которой установлен механизм лазерной обработки с оптической системой, а в нижней части - станина с расположенной на ней строительной платформой, выполненной с возможностью поступательного перемещения в вертикальном направлении. С одной стороны строительной платформы размещен манипулятор со встроенной горелкой высокоскоростного газопламенного напыления для нанесения слоев детали из металлического порошкового материала на строительную платформу. Строительная платформа выполнена из материала-магнетика для обеспечения фиксации напыленных слоев из металлического порошкового материала, а механизм лазерной обработки выполнен с возможностью вырезания контура детали в слое металлического порошкового материала и оплавления металлического порошкового материала внутри контура детали в слое. Обеспечивается повышение межслойной когезионной прочности, изотропия физико-механических свойств, а также повышение чистоты и точности геометрических форм и размеров получаемой детали. 1 ил.

Изобретение относится к изготовлению деталей из металлического порошкового материала с применением технологий 3D-печати. Способ послойного аддитивного изготовления детали включает получение первого слоя путем нанесения металлического порошкового материала на платформу и обработки лазером, получение второго и последующих слоев путем нанесения металлического порошкового материала на первый и предыдущие слои соответственно и обработки его лазером. Нанесение металлического порошкового материала осуществляют путем высокоскоростного газопламенного напыления с углом напыления 45-60° на расстоянии 20-30 см с перемещением пятна контакта газопламенной струи со скоростью 5-10 мм/сек. Обработку металлического порошкового материала в каждом слое лазером осуществляют в два этапа, на первом из которых выжигают контур слоя детали, а на втором - обрабатывают горизонтальную внутреннюю поверхность контура слоя детали с шагом, равным 1-2 толщины слоя. Обеспечивается повышение когезионной прочности детали вдоль направления формирования слоев, а также чистоты поверхности и точности размеров и формы получаемой детали. 1 ил., 2 табл., 1 пр.

Изобретение относится к получению детали аддитивным наращиванием из металлического порошкового материала. Установка содержит камеру, в верхней части которой установлен механизм лазерной обработки с оптической системой, а в нижней части - станина с расположенными на ней системой нанесения порошкового материала и строительной платформой, выполненной с возможностью поступательного перемещения в вертикальном направлении и расположенной под оптической системой и механизмом лазерной обработки. Система нанесения порошкового материала содержит ролик и установленный напротив ролика с одной стороны строительной платформы манипулятор с насадкой для подачи порошкового материала и насадкой для сбора не сплавленного порошкового материала, сообщенными посредством шлангов с картриджем с износостойким металлическим порошковым материалом для формирования износостойкого контура слоя детали и с картриджем с металлическим порошковым материалом с эффектом памяти формы для формирования внутренней горизонтальной поверхности слоя в контуре детали. Обеспечивается получение слоев детали, состоящих из расположенных вдоль направления формирования каждого слоя детали внутренних слоев из различного по составу порошкового материала, а также обеспечивается снижение потерь порошкового материала за счет зацикливания процесса его подачи и сбора. 1 з.п. ф-лы, 1 ил.

Изобретение относится к получению керамических пластин режущего инструмента для обработки резанием труднообрабатываемых материалов. Способ включает прокаливание глинозема, содержащего α-А12О3 и γ-А12О3, его виброизмельчение, обогащение, сушку с получением оксида алюминия модификации α-Al2O3, его смешивание с оксидом кремния, карбидом титана, карбидом вольфрама, карбидом бора, оксидом хрома, никелем, молибденом, ниобием и кобальтом, пластификацию и горячее прессование с получением отпрессованной пластины, спекание, отжиг с выдержкой в течение 5-10 минут в области температурного максимума и ее механическую обработку. Обеспечивается улучшение физико-механических характеристик керамической пластины для режущего инструмента. 1 табл., 3 пр.

Изобретение относится к области машиностроения, а именно к способам нанесения наноструктурированных и износостойких покрытий методом ионно-плазменного напыления на поверхность режущих инструментов. Способ получения износостойкого наноструктурированного покрытия режущего инструмента включает нанесение на поверхность режущего инструмента покрытия, содержащего титан, алюминий и ниобий. Перед нанесением покрытия поверхность режущего инструмента подвергают ионно-плазменному травлению в вакуумной камере низкотемпературной аргоновой плазмой при давлении 1-3 Па, а после нанесения - фазообразующему термическому окислительному отжигу при температуре 550-650°С в течение 1-2 часов. Нанесение покрытия осуществляют ионно-плазменным напылением при давлении 1-3 Па, токе 100-150 мА с получением покрытия толщиной 100-300 мкм. Наносимое покрытие дополнительно содержит ванадий и оксид алюминия при следующем содержании исходных компонентов покрытия, вес.%: Al 5,5-6,5, V 7-8, Nb 2-4, Al2O3 1-2, Ti - остальное. Обеспечивается повышение износостойкости, стойкости к усталостному растрескиванию покрытия и стойкости к коррозионному разрушению. 1 табл., 3 пр.

Изобретение относится к изготовлению деталей из металлического порошкового материала с применением технологий 3D-печати. Способ включает получение первого слоя путем нанесения металлического порошкового материала на платформу, его выравнивания, уплотнения и обработки лазером с шагом, равным 1-2 толщинам слоя, получение второго и последующих слоев путем нанесения металлического порошкового материала на первый и предыдущие слои соответственно, его выравнивания, уплотнения и обработки лазером с шагом, равным 1-2 толщинам слоя. Второй и последующие слои после обработки лазером подвергают обкатке шариком-электродом с одновременным пропусканием через зону контакта шарика-электрода с поверхностью сформированного слоя импульсного электрического тока силой 1-2 кА, напряжением 1-2 В, с длительностью импульсов 0,01-0,08 с и с частотой импульсов 0,4-0,6 Гц, при этом сила прижима шарика-электрода составляет 10-100 Н, скорость перемещения пятна деформации составляет от 1⋅10-3 до 10⋅10-3 м/с. Обеспечивается повышение когезионной прочности детали вдоль направления формирования слоев. 1 ил., 2 табл., 1 пр.

Изобретение относится к оборудованию для получения детали методом селективного лазерного спекания с применением поверхностно-пластического деформирования и ультразвуковой обработки. Установка для получения детали из металлического порошкового материала содержит камеру, в верхней части которой установлены оптическая система и механизм лазерной обработки, в нижней части размещена станина, с расположенными на ней системой осаждения металлического порошкового материала, содержащей ролик, два контейнера для сбора металлического порошкового материала, два питателя для подачи металлического порошкового материала, и строительной платформой, выполненной с возможностью поступательного перемещения в вертикальном направлении и расположенной между питателями системы осаждения металлического порошкового материала. С одной стороны одного из контейнеров для сбора металлического порошкового материала дополнительно установлен ультразвуковой генератор, к которому подключен встроенный в манипулятор магнитострикционный ультразвуковой преобразователь со сферическим твердосплавным наконечником. Обеспечивается повышение когезионной прочности и изотропии физико-механических свойств детали. 1 ил.

Изобретение относится к оборудованию для получения детали методом селективного лазерного спекания с применением поверхностно-пластического деформирования и точечной контактной сварки. Установка для получения детали из металлического порошкового материала содержит камеру, в верхней части которой установлены оптическая система и механизм лазерной обработки, в нижней части размещена станина с расположенными на ней системой осаждения металлического порошкового материала, содержащей ролик, два контейнера для сбора металлического порошкового материала, два питателя для подачи металлического порошкового материала, и строительной платформой, выполненной с возможностью поступательного перемещения в вертикальном направлении и расположенной между питателями системы осаждения металлического порошкового материала. С одной стороны одного из контейнеров для сбора металлического порошкового материала дополнительно установлен манипулятор со встроенным шариком-электродом, подключенным к первому контакту дополнительно установленного на станине трансформатора, а второй контакт трансформатора подведен к строительной платформе. Обеспечивается повышение межслойной когезионной прочности и изотропии физико-механических свойств детали. 1 ил.

Изобретение относится к способу изготовления деталей из металлического порошкового материала с применением технологий 3D-печати. Способ изготовления детали из металлического порошкового материала послойным аддитивным наращиванием детали включает получение первого слоя путем нанесения металлического порошкового материала на платформу, его выравнивания, уплотнения и обработки лазером с шагом, равным 1-2 толщинам слоя, получение второго и последующих слоев путем нанесения металлического порошкового материала на первый и предыдущие слои соответственно, его выравнивания, уплотнения и обработки лазером с шагом, равным 1-2 толщинам слоя. Второй и последующие слои после обработки лазером подвергают ультразвуковому поверхностному упрочнению с частотой ультразвуковых колебаний 38-42 кГц твердосплавным рабочим наконечником сферической формы с усилием прижима 10-100 Н. Обеспечивается повышение когезионной прочности детали вдоль направления формирования слоев. 2 табл., 1 пр., 1 ил.

Изобретение относится к области металлургии и машиностроения, а именно к комбинированным способам упрочнения детали, и может быть использовано при изготовлении режущего инструмента для ленточнопильного металлорежущего станка, работающего в условиях изнашивания и знакопеременных нагрузок. Способ поверхностного упрочнения стальной детали включает предварительное поверхностное локальное легирование из нанесенной на ее поверхность обмазки с использованием нагрева, термодиффузионное насыщение поверхности детали легирующими элементами из упомянутой обмазки путем нагрева, выдержку и охлаждение. Упомянутая обмазка содержит легирующие компоненты в виде хрома, марганца, титана при следующем соотношении, мас. %: Cr - 48-49, Mn - 48-49, Ti - 2-4, при этом локальное легирование из указанной обмазки проводят путем нагрева плазменной дугой в защитной атмосфере аргона, а упомянутое термодиффузионное насыщение проводят при температуре 760-850°C с выдержкой в течение 2-2,5 часов. После охлаждения осуществляют цементацию стальной детали при нагреве токами высокой частоты (ТВЧ) при температуре 1200-1250°C в течение 20-30 минут. Обеспечивается повышение износостойкости и устойчивости к ударным и знакопеременным нагрузкам. 1 табл., 3 пр.

Изобретение относится к области металлургии и машиностроения, а именно к комбинированным способам упрочнения детали, и может быть использовано при изготовлении режущего инструмента для ленточнопильного металлорежущего станка, работающего в условиях изнашивания и знакопеременных нагрузок. Способ поверхностного упрочнения стальных деталей включает предварительное поверхностное локальное легирование из нанесенной на ее поверхность обмазки с использованием лазерного нагрева, термодиффузионное насыщение поверхности детали легирующими элементами из упомянутой обмазки путем нагрева, выдержку и охлаждение. Упомянутая обмазка содержит легирующие компоненты хром и марганец в соотношении 1:1. Указанное термодиффузионное насыщение проводят при температуре 760-850°С с выдержкой в течение 2-2,5 часов. После охлаждения осуществляют цементацию стальной детали при нагреве токами высокой частоты (ТВЧ) при температуре 1200-1250°С в течение 20-30 минут. Обеспечивается повышение износостойкости и устойчивости к ударным и знакопеременным нагрузкам. 1 табл., 3 пр.

Изобретение относится к способу получения керамических пластин режущего инструмента для обработки резанием труднообрабатываемых материалов, таких как жаропрочные и легированные стали. Способ включает прокаливание глинозема, его виброизмельчение, обогащение, сушку с получением оксида алюминия модификации α-Аl2O3. Полученный оксид алюминия смешивают с легирующими компонентами при следующем соотношении компонентов, мас.%: оксид алюминия 58-60, карбид титана 30-32, оксид хрома 5-7, никель 2-3, молибден 1-2. Далее осуществляют пластификацию и горячее прессование с получением отпрессованной пластины, спекание и отжиг с выдержкой 5-10 мин в области температурного максимума полученной пластины и ее механическую обработку. Изобретение обеспечивает повышение стойкости полученных керамических пластин при обработке труднообрабатываемых материалов до 35-40 мин, твердость и прочность при изгибе до 990 МПа. 1 табл., 3 пр.

Изобретение относится к вакуумной установке для получения наноструктурированного покрытия из материала с эффектом памяти формы на поверхности детали. Вакуумная установка содержит раму с установленной на ней вакуумной камерой. Камера соединена с вакуумным насосом. Установка также содержит механизм закрепления детали, газопламенную горелку, механизм подачи порошкового материала в газопламенную горелку, технологический модуль для ионной очистки обрабатываемой детали, пирометр, два магнетрона с источником питания и источник для ионной имплантации металлов с блоком питания. Блок управления соединен с баллонами с газом. Механизм закрепления детали выполнен в виде трехкулачкового патрона, размещенного на установленном в вакуумной камере поворотном столе. Стол соединен с электродвигателем. Газопламенная горелка закреплена в оснащенном пирометром и лазерным сканером и обеспечивающем ее поворот 30-150 градусов в вертикальной плоскости относительно оси винта поворотном механизме. Поворотный механизм установлен в передаче винт-гайка, закрепленной в нижней части вакуумной камеры и связанной с электродвигателем. Технический результат заключается в обеспечении равномерности и точности нанесения покрытий на поверхности детали и повышении степени автоматизации процесса. 1 ил.

Изобретение относится к станкостроению, а именно к устройствам ленточно-пильных станков для разрезки различных материалов. Ленточно-отрезной станок содержит пильную раму, два диска, один из которых приводной, а другой натяжной, расположенные на пильной раме, ленточную пилу, натянутую на упомянутых дисках, стабилизирующие элементы для гашения вибрации ленточной пилы и две направляющие ленточной пилы, разворачивающие ее относительно плоскости заготовки в зоне резания и установленные на пильной раме. Каждый из стабилизирующих элементов состоит из двух роликов, один из которых металлический, а второй - из капролона. Направляющие установлены единым блоком на пильной раме. Каждый стабилизирующий элемент содержит дополнительно установленный на пильной раме поворотный механизм, каждый из которых выполнен с возможностью поворота на угол 45-135° относительно плоскости заготовки в зоне резания в противоположном направлении относительно друг друга, обеспечивающий скручивание ленточной пилы и состоящий из закрепленного на пильной раме неподвижного и подвижного элементов, сообщенных между собой посредством болтового соединения. Болтовое соединение размещено в сквозном отверстии, вырезанном по траектории параболы на подвижном элементе, который сообщен с роликами посредством осей. На сопрягаемых поверхностях подвижного и неподвижного элементов дополнительно нарезаны треугольного профиля шлицы высотой от 3 до 5 мм. В результате обеспечивается повышение жесткости и стойкости режущего инструмента за счет снижения вибрации ленточной пилы и, как следствие, снижение интенсивности звукового излучения при резании в самом источнике возникновения. 2 з.п. ф-лы, 3 ил.

Изобретение относится к установке для получения наноструктурированных покрытий из материалов с эффектом памяти формы на поверхности детали. Установка выполнена с возможностью достижения в вакуумной камере давления 2÷4 бар. Установка содержит газовый баллон с инертным газом для создания инертной атмосферы в вакуумной камере и дополнительный газовый баллон с инертным газом с редуктором, штуцером для подачи инертного газа в камеру, гибким шлангом и регулируемым вентиляционным отводом и манометром. Упомянутый штуцер для подачи инертного газа установлен в нижней части вакуумной камеры и соединен посредством гибкого шланга через редуктор с упомянутым дополнительным газовым баллоном инертного газа. В верхней части вакуумной камеры установлены упомянутые регулируемый вентиляционный отвод и манометр. Дополнительный газовый баллон содержит аргон. Технический результат заключается в уменьшении степени рассеивания порошкового материала с эффектом памяти формы.1 з.п. ф-лы, 1 ил.

Изобретение относится к области металловедения, а именно к химико-термической обработке металлических изделий, к созданию наноструктурированных материалов конструкционного назначения, к решению проблемы трения и износа, и может быть использовано для повышения долговечности деталей машин в любой отрасли промышленности. Способ высокоскоростного газопламенного напыления многослойного покрытия из порошковых материалов на металлическое изделие в защитной атмосфере включает механическую активацию порошков, нанесение нижнего слоя из механически активированного порошка, среднего слоя из механически активированного порошка с эффектом памяти формы на основе TiNiZr, верхнего слоя из механически активированной смеси порошков и отжиг. Нижний слой наносят из механически активированного порошка на основе TiNi эквиатомного состава толщиной 1000-1500 мкм при комнатной температуре в аустенитном состоянии. Верхний слой наносят из механически активированной смеси порошков cNB-Co-Mo-TiNi-TiNiZr при следующем соотношении компонентов, вес. %: cNB 62-74, Со 6-10, Мо 8-10, TiNi 6-8, TiNiZr 6-10 толщиной 200-600 мкм. После напыления нижнего слоя проводят комплексную обработку, включающую поверхностно-пластическую деформацию и контактную точечную сварку, а после нанесения среднего и верхнего слоев осуществляют комбинированную обработку поверхностно-пластического деформирования и ультразвукового упрочнения. Отжиг проводят при температуре 500-700°С в течение 3-4 часов в защитной атмосфере аргона. Обеспечивается повышение адгезии между подложкой и композитом, а также между слоями композита, получение ультрамелкозернистой структуры, высоких механических свойств композита, высокой стойкости к кавитационному износу и реализация деформационного и дисперсного упрочнения материала. 1табл., 1пр.

Изобретение относится к способу получения многослойного композитного покрытия на поверхности детали центробежного насоса. Техническим результатом является создание слоистого композита с высокими прочностными характеристиками, обладающего высокой стойкостью к абразивному и кавитационному износу. Нанесение порошкового материала на рабочую поверхность детали осуществляют высокоскоростным газопламенным напылением. Нижний слой покрытия наносят толщиной 100-150 мкм из механически активированного порошка Ni, второй слой - толщиной 500-700 мкм из механически активированного порошка с эффектом памяти формы на основе TiNiCuHf, третий слой - толщиной 500-700 мкм из механически активированного порошка с эффектом памяти формы на основе TiNiZr, а верхний слой толщиной 200-600 мкм из механически активированной смеси порошков из cNB, Со, Ni, Mo, при их соотношении вес.%: cNB 70-80, Со 6-10, Ni 6-10, Mo 8-10. Затем проводят отжиг при температуре 500-700°C в течение 3-4 часа. После нанесения каждого из первых трех слоев осуществляют комбинированную обработку поверхностно-пластического деформирования и ультразвукового упрочнения при нагревании в интервале температур мартенситного превращения. 1 пр., 1 табл.

Изобретение относится к способам повышения прочности деталей с покрытиями. Осуществляют обкатку детали деформирующим элементом и производят последующее упрочнение покрытия ультразвуковой обработкой с частотой ультразвуковых колебаний 18-22 кГц упрочняющим элементом. Расстояние между деформирующим и упрочняющим элементами составляет 10-30 мм, а линейная скорость перемещения пятна деформации деформирующих и упрочняющих элементов 50-100⋅10-3 м/с при продольной подаче 0,08-0,12 мм/об. В результате повышается адгезионная прочность между покрытием и подложкой. 1 з.п. ф-лы, 2 ил., 2 табл.

Изобретение относится к способам повышения прочности деталей с покрытиями. Осуществляют обкатку детали деформирующим элементом с одновременным пропусканием через зону контакта деформирующего элемента с обрабатываемой поверхностью импульсного электрического тока силой 2-5 кА, напряжением 2-3 В, с длительностью импульсов 0,08-0,2 с и с частотой импульсов 0,16-0,4 Гц. Обкатку осуществляют с силой 50-3000 Н со скоростью перемещения пятна деформации 50-100⋅10-3 м/с при продольной подаче 0,08-0,12 мм/об. В результате повышается адгезионная прочность между покрытием и подложкой. 1 ил., 2 табл.
Изобретение относится к области металлургии, а именно нанесению покрытий с эффектом памяти формы. Способ получения наноструктурированных покрытий с эффектом памяти формы на стальной поверхности включает нанесение порошка с эффектом памяти формы на основе Ni на стальную поверхность, закалку с нагревом до 1000°C и последующим охлаждением в жидком азоте, пластическую деформацию полученного покрытия в три этапа при нагреве. После каждого этапа пластической деформации проводят отжиг. Используют порошок с эффектом памяти формы, содержащий компоненты при следующем соотношении, мас.%: Ni - 41-44, Cu - 5-10, Ti - остальное. Перед нанесением покрытия осуществляют предварительную механическую активацию порошка TiNiCu в вакууме. Нанесение порошка осуществляют высокоскоростным газопламенным напылением. Полученное TiNiCu покрытие с эффектом памяти формы обладает повышенными механическими свойствами за счет повышения адгезии, снижения пористости покрытий, а за счет формирования наноструктуры улучшаются пластические свойства покрытия. 4 з.п. ф-лы, 1 табл., 1 пр.

Изобретение относится к области машиностроения и металлургии, в частности к вакуумной установке для получения наноструктурированных покрытий из материала с эффектом памяти формы на поверхности детали. Упомянутая установка содержит раму с установленной на ней вакуумной камерой, соединенной с вакуумным насосом, механизм закрепления детали, газопламенную горелку для высокоскоростного газодинамического напыления, установленную под углом 45° к поверхности детали, механизм подачи порошкового материала с эффектом памяти формы в газопламенную горелку, пирометр для измерения температуры обрабатываемой детали, технологический модуль для ионной очистки обрабатываемой детали, приспособление для поверхностно-пластического деформирования детали для формирования наноструктурированного слоя, понижающий трансформатор для дополнительного нагрева поверхности детали, устройство для охлаждения поверхности детали для отрицательного интервала температур мартенситного превращения при поверхностно-пластическом деформировании и управляющее устройство. Предложенная установка дополнительно содержит два магнетрона и источник для ионной имплантации металлов, закрепленные в корпусе вакуумной камеры с возможностью направления на обрабатываемую деталь. Приспособление для поверхностно-пластического деформирования выполнено в виде пресса с верхней неподвижной и нижней подвижной траверсами, расположенными в вакуумной камере, причем на нижней подвижной траверсе установлены зажимной механизм закрепления детали и упомянутое устройство для охлаждения поверхности детали. Газопламенная горелка жестко закреплена в корпусе вакуумной камеры. Повышаются прочностные характеристики и износостойкость покрытий деталей, а также обеспечивается возможность обработки изделий любой формы. 1 ил., 2 пр.

 


Наверх