Патенты автора Хорошавина Елена Александровна (RU)

Изобретение относится к области внутрипромыслового сбора газа, а именно к системам ввода ингибитора образования гидратов в газовые шлейфы. Система содержит емкость с ингибитором, трубопроводы подачи ингибитора к защищаемым точкам, исполнительный механизм, обеспечивающий прямую управляемую программную подачу ингибитора, преобразователи температуры и давления, установленные в защищаемых точках и соединенные со станцией управления и исполнительным механизмом беспроводным каналом связи, устройства дозирования ингибитора, состоящие из обратного и управляемого прямого клапанов и регулирующей шайбы, которые установлены в защищаемых точках и соединены с трубопроводом подачи ингибитора. Емкость с ингибитором выполнена в виде гидроаккумулятора с датчиком давления, соединенным со станцией управления беспроводным каналом связи. Исполнительный механизм выполнен в виде регулирующего редуктора. Обеспечивается диагностирование образования гидратной пробки в режиме реального времени и оперативная подача ингибитора непосредственно на тот участок, в котором начинается образование гидратной пробки. 2 ил.

Изобретение относится к области добычи природного газа, в частности к области предупреждения гидратообразования в системах промыслового сбора газа преимущественно в условиях Крайнего Севера. Технический результат - оптимизация расхода ингибитора гидратообразования и повышение надежности эксплуатации промысловых систем сбора газа. По способу в шлейф подают ингибитор гидратообразования. Для определения начала процесса гидратообразования измеряют температуру газа на устье скважины, фактическую температуру газа на выходе из шлейфа и температуру окружающей среды. Вычисляют по детерминированной модели некоторое расчетное значение температуры газа. Принимают его за базовое значение и в режиме реального времени сравнивают фактическое значение температуры на выходе из шлейфа с базовым значением. Дополнительно в режиме реального времени измеряют давление на устье скважины и на выходе из шлейфа. За базовое значение температуры принимают теоретическое расчетное значение температуры гидратообразования. При уменьшении фактической температуры на выходе из шлейфа до значений ниже базового значения сравнивают текущее значение давления на выходе из шлейфа со значением, полученным в предыдущем измерительном цикле, и текущее значение давления на устье скважины со значением, полученным в предыдущем измерительном цикле. Если это давление на устье возросло на некоторую величину, а давление на выходе из шлейфа одновременно уменьшилось на некоторую величину, конкретные значения которых определяют по когнитивной модели для данного шлейфа, и эта динамика сохраняется в течение времени, также определяемого по когнитивной модели, то диагностируют начало процесса гидратообразования. Вначале увеличивают подачу ингибитора в шлейф. Если значения давления на устье скважины и выходе шлейфа не выходят за установленные когнитивной моделью пределы изменения, то корректируют теоретическое расчетное значение температуры гидратообразования по когнитивной модели. При этом теоретическое расчетное значение температуры гидратообразования определяют по детерминированной модели, задаваемой аналитическим выражением. 2 з.п. ф-лы, 2 табл., 3 ил.

Изобретение относится к газодобывающей промышленности и может быть использовано при разработке и эксплуатации газовых месторождений. Техническим результатом является диагностирование начала обводнения газовых скважин в режиме реального времени и предотвращение их самозадавливания. Для контроля процесса обводнения используют данные стандартных замеров устьевых параметров (давления и температуры), определяют среднеквадратичные отклонения температуры и давления при разных режимах работы скважины и их сравнивают. Начало обводнения устанавливают по изменению во времени значений среднеквадратичного отклонения (СКО) температуры и давления и . По результатам ежедневного замера давления и температуры на устье нормально работающих скважин за определенный промежуток времени определяют значения среднеквадратичного отклонения (СКО) температуры и давления и , которые принимают за образцовые. Производят постоянный замер давления и температуры на устье наблюдаемых скважин, рассчитывают СКО температуры и давления и наблюдаемой скважины, сравнивают эти значения друг с другом и с образцовыми значениями СКО и при выполнении условий , , диагностируют начало обводнения скважины. Анализируя динамику изменения СКО температуры и давления обводненной скважины, при выполнении условий , , диагностируют самозадавливание скважины. 3 табл., 6 ил.

Изобретение относится к газодобывающей промышленности и может быть использовано при добыче газа на газовых и газоконденсатных месторождениях, использующих коллекторно-лучевую организацию схемы сбора, в период снижения добычи в условиях накопления жидкости в скважинах и шлейфах. Технический результат - повышение эффективности эксплуатации газового промысла за счет возможности эксплуатации до минимальных значений устьевых давлений без изменений технологии добычи при значительном сокращении потерь газа при продувках шлейфов. По способу на отдельных требующих продувки шлейфах создают повышенный перепад давления между кустом скважин и общим коллектором здания переключающей арматуры (ЗПА) посредством изменения степени сжатия компрессора и одновременно ограничивают расход в остальных шлейфах на рабочем уровне посредством автоматических регуляторов. Для этого все скважины и контролируемые точки шлейфов оснащают системой телеметрии, состоящей из преобразователей давления и температуры. Постоянно контролируют текущие значения и динамику изменения давления, температуры на устьях скважин, в контролируемых точках кустового коллектора и шлейфа, а также перепады давления между устьем скважины и кустовым коллектором, кустовым коллектором и общим коллектором ЗПА. На основе этой информации фиксируют изменение гидравлического сопротивления и формируют управляющее воздействие в виде понижения давления в общем коллекторе ЗПА на величину, обеспечивающую снижение давления в кустовом коллекторе до минимальной величины, допускаемой регламентом работы скважин. 6 ил.

Изобретение относится к измерительной технике. Способ заключается в выделении в преобразователе каналов измерения основной и дополнительной (влияющей) входных величин, градуировке каналов измерительного преобразователя при различных комбинациях значений его входных величин, формировании по результатам градуировки математической модели измерительного преобразователя в виде совокупности ее параметров, связывающей значения выходных величин со значениями входных величин, и определении значения основной входной величины по параметрам математической модели и текущим значениям выходных величин, причем при проведении градуировочного эксперимента стабилизируют основную входную величину в нескольких точках диапазона преобразования, в каждой точке стабилизации основной входной величины осуществляют ступенчатое изменение влияющей входной величины в пределах диапазона ее изменения с различными начальными значениями и различными по знаку и но амплитуде приращениями, фиксируют поведение во времени значений входных и выходных величин измерительных каналов основной и влияющей входных величин, организуют дополнительный виртуальный канал определения скорости изменения значений выходной величины канала измерения влияющей величины, после чего формируют математическую модель, связывающую выходные значения основного, дополнительного и виртуального каналов с входными величинами преобразователя, и, наконец, определяют текущее значение основной входной величины по параметрам математической модели и текущим значениям выходных величин основного, дополнительного и виртуального измерительных каналов. Технический результат заключается в повышении точности измерения. 2 ил.

 


Наверх