Патенты автора Кадирова Джамиля Кадировна (RU)

Изобретение относится к термоэлектрической технике. Устройство состоит из термоэлектрической батареи, составленной из идентичных по размерам и физическим свойствам термоэлементов, питаемой источником электрической энергии, обе поверхности которой находятся на некотором расстоянии (зазоре) от стенок транспортных зон с движущимися в них средами. В транспортных зонах под углом в пределах от 20о до 60° по отношению к плоскости движения сред выполнены сквозные отверстия, образующие вместе с зазорами единые каналы для движения воздуха. В начале и конце транспортных зон в направлении, также перпендикулярном движению сред, устанавливаются вентиляторные агрегаты, запитываемые от того же источника электрической энергии, что и термоэлектрическая батарея. Вентиляторные агрегаты осуществляют продув воздуха в зазоре между стенками транспортных зон и поверхностями термоэлектрической батареи, причем один вентиляторный агрегат работает на вдув воздушного потока, а второй на его выдув. Термоэлектрическая батарея, транспортные зоны и вентиляторные агрегаты образуют жесткую механическую конструкцию посредством крепежных приспособлений. Технический результат - интенсификация теплопередачи между спаями термоэлементов, составляющих термоэлектрическую батарею, и обтекающими ее средами. 1 ил.

Изобретение относится к термоэлектрической технике. Устройство состоит из термоэлектрической батареи, составленной из идентичных по размерам и физическим свойствам термоэлементов, обе поверхности которой находятся на некотором расстоянии (зазоре) от стенок транспортных зон с движущимися в них средами. В транспортных зонах перпендикулярно направлению движения сред выполнены сквозные отверстия, образующие вместе с зазорами единые каналы для движения воздуха. В начале и конце транспортных зон в направлении, также перпендикулярном движению сред, устанавливаются вентиляторные агрегаты, запитывамые от того же источника электрической энергии, что и термоэлектрическая батарея. Вентиляторные агрегаты осуществляют продув воздуха в зазоре между стенками транспортных зон и поверхностями термоэлектрической батареи, причем один вентиляторный агрегат работает на вдув воздушного потока, а второй на его выдув. Термоэлектрическая батарея, транспортные зоны и вентиляторные агрегаты образуют жесткую механическую конструкцию посредством крепежных приспособлений. Технический результат - интенсификация теплообмена между потоками жидкостей или газов (средами) с различной температурой. 1 ил.

Изобретение относится к термоэлектрической технике. Устройство состоит из термоэлектрической батареи, составленной из идентичных по размерам и физическим свойствам термоэлементов, питаемой источником электрической энергии, обе поверхности которой находятся на некотором расстоянии от стенок транспортных зон с движущимися в них средами. В начале и конце транспортных зон в направлении, перпендикулярном движению сред, устанавливаются вентиляторные агрегаты, запитываемые от того же источника электрической энергии, что и термоэлектрическая батарея. Вентиляторные агрегаты осуществляют продув воздуха в зазоре между стенками транспортных зон и поверхностями термоэлектрической батареи, причем один вентиляторный агрегат работает на вдув воздушного потока, а второй - на его выдув. Термоэлектрическая батарея, транспортные зоны и вентиляторные агрегаты образуют жесткую механическую конструкцию посредством крепежных приспособлений. Технический результат - интенсификация теплопередачи между спаями термоэлементов, составляющих термоэлектрическую батарею, и обтекающими ее средами. 1 ил.

Изобретение относится к области электротехники, в частности к электрическим машинам, и касается выполнения синхронного микродвигателя (СД) с электромагнитным униполярным возбуждением. Технический результат - повышение надежности работы синхронного микродвигателя за счет создания на роторе постоянных полюсов электромагнитным путем без использования постоянных магнитов. Синхронный микродвигатель (СД) с электромагнитным униполярным возбуждением содержит статор, на котором расположены обычный сердечник с трехфазной сетевой обмоткой, создающей вращающееся магнитное поле статора, и обмотка возбуждения с постоянным током, создающая поток возбуждения, а также цилиндрический массивный ротор из железомедного сплава, разделенный немагнитной проводящей прослойкой на две магнитоизолированные части - два сердечника ротора. При этом согласно данному изобретению, с целью повышения надежности работы СД, осуществляется бесконтактное электромагнитное униполярное возбуждение, при котором два сердечника ротора образуют два постоянных магнитных полюса с неизменно разной полярностью, северный N и южный S, взаимодействие которых с вращающимся магнитным полем статора создает синхронизирующий момент, а наличие на роторе массивных сердечников обеспечивает ему асинхронный пуск без пусковой обмотки. 2 ил.

Изобретение относится к области электротехники, в частности к конструкции статора трехфазного асинхронного двигателя (АД) малой мощности с круговым магнитным полем. Технический результат - улучшение электрических и магнитных свойств статора АД и повышение за счет этого его энергетических показателей, а также упрощение технологии изготовления статора и уменьшение его материалоемкости. Предлагаемый статор выполнен явнополюсным, но его явновыраженные полюса не имеют обмоток и зубцовой зоны. Трехфазная обмотка статора, создающая симметричную систему фазных МДС, выполнена сосредоточенной, в виде катушек, и размещается на радиальных выступах (полюсах) торцового сердечника, расположенного у одного из торцов статора перпендикулярно оси АД с центральным отверстием для вала. Полюса торцового сердечника с обмотками замыкаются магнитно с полюсами статора стальными пакетами-стержнями. Новым в конструкции статора является то, что элементы его магнитопровода вместе с сердечником ротора образуют симметричную многофазную магнитную цепь, соединенную звездой с двумя узловыми «точками»: в торцовом сердечнике статора и в роторе. В фазах такой симметричной магнитной цепи под действием симметричной системы МДС возникает система фазных магнитных потоков, симметричная в пространстве и во времени (по фазе). При их сложении образуется круговое вращающееся магнитное поле статора, а узловые «точки» магнитной цепи имеют нулевой магнитный потенциал, в связи с чем фазные магнитные потоки статора преодолевают воздушный зазор только один раз в прямом направлении: полюс статора - воздушный зазор - сердечник ротора и имеют только нормальную (радиальную) составляющую вектора магнитной индукции. Обратный поток и тангенциальные составляющие вектора индукции в спинке ротора отсутствуют. 6 ил.
Мы будем признательны, если вы окажете нашему проекту финансовую поддержку!

 


Наверх