Патенты автора Захаров Андрей Игоревич (RU)

Группа изобретений относится к космической технике, а именно к способу и системе определения ориентации космического аппарата (КА) с автономной коррекцией эффекта аберрации света с помощью наблюдения звезд. Система включает не менее трех звездных датчиков (ЗД), установленных на общем основании таким образом, что оптические оси датчиков попарно не параллельны друг другу с заданными углами между их оптическими осями, определяемыми расположением ЗД на основании, блок обработки данных, полученных от звездных датчиков. Каждый из ЗД в блоке выполнен с возможностью определения направления оси визирования ЗД в инерциальной системе координат посредством определения координат центров полей зрения датчиков и угла разворота поля зрения вокруг его центра с получением предварительных параметров ориентации КА. Способ включает одновременное измерение координат центров полей зрения датчиков в процессе движения КА, определение углов между центрами полей зрения не менее трех пар датчиков, определение величины отклонений измеренных углов от заданных, определение вектора пространственной скорости КА, после чего определяют эффект аберрации света и учитывают его при определении пространственной ориентации КА. 2 н. и 6 з.п. ф-лы, 8 ил.
Изобретение относится к области медицины, а именно к педиатрии, детской урологии, и может быть использовано при лечении детей, оперированных по поводу гидронефроза. Для этого на область проекции почек воздействуют высокоинтенсивным импульсным магнитным полем от аппарата АМТ-2-АГС амплитудой 200-700 мТл, длительностью импульсов 100 миллисекунд, контактно, стабильно, продолжительностью воздействия по 9 мин, на курс 8-10 ежедневных процедур. Способ обеспечивает эффективное лечение детей с данной патологией за счет воздействия в определенном режиме на глубоко расположенные ткани и органы без раздражающего действия под электродами, что также способствует улучшению уродинамики. 2 пр.

Изобретение относится к области наблюдения и слежения за полётом космических аппаратов (КА) при их движении вокруг тяготеющего небесного тела (Земли, Луны, Солнца и т.д.). На борту КА устанавливают не менее двух звездных датчиков (ЗД) и столько же датчиков направления на тяготеющее тело, например на Солнце (СД). Несколько ЗД снижают опасность засветки, а несколько СД позволяют расширить их фактическое поле зрения (при одновременном попадании в них Солнца). Предложенный алгоритм обработки измерений ЗД и СД, приводящий их к единой системе координат, связанной с основанием для установки ЗД и СД, обеспечивает повышение точности определения орбиты КА. Этому способствует и система геометрического контроля в виде множества сенсоров смещения датчиков относительно их основания. Техническим результатом является высокоточное автономное определение параметров орбиты КА вокруг того или иного небесного тела. 3 з.п. ф-лы, 11 ил.

Группа изобретений относится к машиностроению, в частности к соединительному блоку для соединения детали на двух и трех шаровых опорах. Техническим результатом изобретения является возможность перемещения шаровых опор относительно детали; а также возможность неизменного позиционирования детали относительно шаровых опор при расширении или сжатии детали, например, из-за изменения температуры. Соединительный блок для соединения детали на двух шаровых опорах при помощи двух крепежных элементов характеризуется следующими признаками: крепежные элементы выполнены в виде винта, содержащего головку и стержень; в каждой шаровой опоре выполнено глухое радиальное отверстие с резьбой, предназначенное для размещения стержня винта. Для соединения каждой шаровой опоры в детали выполнены сложнопрофильные сквозные отверстия переменного диаметра, предназначенные для размещения винтов, при этом данные сквозные отверстия включает участок сопряжения детали с шаровой опорой, цилиндрический участок для размещения стержня винта и участок для размещения головки крепежного винта. Каждое сложнопрофильное отверстие в детали размещено соосно отверстию в соответствующей шаровой опоре. Стержень каждого крепежного винта размещен в соответствующем цилиндрическом участке сквозного отверстия детали с зазором, обеспечивающим угловое смещение детали относительно соответствующей шаровой опоры, и закреплен посредством резьбы в глухом отверстии соответствующей шаровой опоры. Под каждой головкой винта установлены упругий компенсатор и коническая шайба, опирающаяся своей внутренней конической поверхностью на сферическую поверхность, образованную на участке для размещения головки соответствующего крепежного винта. Каждый центр выпуклой соответствующей сферической поверхности совпадает с центром соответствующей ей шаровой опоры. 2 н. и 12 з.п. ф-лы, 26 ил.

Изобретение относится к области контрольной и измерительной аппаратуры и техники и может использоваться в устройствах, где важно знать взаимное положение и ориентацию нескольких приборов, изобретение может быть применено на транспорте, космической и лабораторной технике. Техническим результатом изобретения является повышение точности совместных измерений приборов, установленных на основании устройства. Устройство для контроля взаимной ориентации и взаимного положения измерительных приборов содержит нижнюю плиту, боковые платформы, выполненные с возможностью размещения на них измерительных приборов, датчики смещения и блок обработки данных, соединенный с датчиками смещения. Нижняя плита и боковые платформы жестко закреплены посредством шаровых опор таким образом, что их плоскости образуют пирамидальную конструкцию, а сами боковые платформы соединены между собой в вершине образуемой пирамиды посредством одной шаровой опоры. Каждая боковая платформа соединена с тремя шаровыми опорами посредством соответственно трех крепежных элементов. При этом крепежные элементы выполнены в виде винта, содержащего головку и стержень; в каждой шаровой опоре выполнено глухое радиальное отверстие с резьбой, предназначенное для размещения соответствующего стержня винта. Для соединения третьей шаровой опоры в боковой платформе выполнено сложнопрофильное сквозное отверстие переменного диаметра, предназначенное для размещения третьего винта, при этом сквозное отверстие включает цилиндрический участок для размещения стержня винта и участок для размещения головки крепежного винта. Между боковой платформой и третьей шаровой опорой размещена коническая шайба, через которую проходит стержень винта и которая контактирует своей внутренней конической поверхностью со сферической поверхностью данной шаровой опоры. 11 з.п. ф-лы, 27 ил.

Изобретение относится к определению техники и может использоваться в тех системах, где важно знать взаимное положение и ориентацию нескольких приборов, в частности, оно может быть применено на транспорте, в космической и лабораторной технике. Устройство размещено на опоре и содержит нижнюю плиту, боковые платформы, средства крепления, предназначенные для закрепления боковых платформ и нижней плиты к опоре, а также датчики смещения и блок обработки данных, соединенный с датчиками смещения, при этом нижняя плита и боковые платформы выполнены с возможностью установки на опоре с образованием пирамидальной конструкции. При этом нижняя плита и боковые платформы взаимно расположены с зазорами вдоль ребер образуемой пирамидальной конструкции, достаточными для размещения в них датчиков смещения, при этом в каждом зазоре размещен по меньшей мере один датчик смещения. Устройство выполнено с возможностью размещения измерительных приборов на боковых платформах. Технический результат заключается в повышении точности совместных измерений приборов. 4 з.п. ф-лы, 1 ил.

Изобретение относится к способам определения ориентации по координатам наблюдаемых звезд, преимущественно для навигационных целей. В частности, для космической навигации путем определения положения космического аппарата относительно изображений звезд, наблюдаемых на небесной сфере. Способ определения ориентации по изображениям участков звездного неба заключается в том, что предварительно составляют и запоминают бортовой каталог координат звезд, ограничивая выбор звезд звездной величиной, отображаемой используемой системой наблюдения. Затем в процессе определения ориентации формируют изображение участка звездного неба, выбирают наиболее яркую звезду в центральной части поля зрения, выбирают соседние с ней звезды. Далее определяют попарные расстояния на изображении от выбранной центральной звезды до выбранных соседних звезд, а затем сравнивают измеренные на полученном изображении расстояния между звездами с расстояниями, полученными из бортового каталога. При совпадении всех этих расстояний отождествляют выбранную центральную звезду на изображении с соответствующей звездой из каталога и определяют ориентацию, учитывая положение этой звезды на изображении в приборной системе координат. При этом каждую звезду при составлении бортового каталога дополнительно характеризуют значениями расстояний до двух ближайших к ней звезд и расстоянием между самими этими звездами или до трех ближайших к ней звезд и по результатам этих определений формируют трехкоординатное признаковое пространство. В процессе определения ориентации, для выбранной на изображении звезды, по указанным измеренным расстояниям определяют положение этой звезды в признаковом пространстве, а затем по ее каталожным координатам на звездном небе определяют ее положение и находят ориентацию аппарата. Техническим результатом заявленного способа является повышение эффективности работы используемых датчиков звездной ориентации. 2 з.п. ф-лы, 1 ил.

Изобретение относится к космической технике и может быть использовано при создании космических систем обзора космического пространства для наблюдения и обнаружения опасных астероидов и комет, летящих к Земле со стороны Солнца. Технический результат – расширение функциональных возможностей. Для этого система включает один или более космических аппаратов, расположенных на орбите Земли на постоянном расстоянии от нее, и наземные средства управления, приема информации с космических аппаратов и обработки получаемой информации. Космические аппараты осуществляют постоянный обзор той части космического пространства между Солнцем и Землей, которая из-за засветки Солнцем недоступна для наблюдения с Земли и околоземных орбит. Эта область представляет собой конус с вершиной на Земле, с осью, направленной на Солнце, и углом при вершине, равным углу засветки Солнцем оптической аппаратуры наблюдения, размещенной на Земле и на околоземных орбитах. Наземный информационно-управляющий центр (НИУЦ) формирует и передает на космический аппарат (аппараты) команды управления, программы сканирования космического пространства и времена радиовидимости с наземными средствами приема информации. Космический аппарат (аппараты) ежесуточно на интервалах времени радиовидимости с наземных средств передает на них информацию, получаемую как в реальном времени, так и запомненную при наблюдениях вне интервалов радиовидимости. Наземный Центр обработки информации, входящий в состав НИУЦ, осуществляет обработку полученной информации и вырабатывает окончательную информацию об обнаруженных небесных телах. В случае обнаружения потенциально опасных небесных тел НИУЦ выдает через блок связи с абонентами системы в согласованном формате эту информацию органам государственного управления, МЧС и другим организациям, входящим в состав внешних абонентов предлагаемой космической системы. Данная космическая система может быть использована также для проведения астрономических научных исследований. 2 з.п. ф-лы, 7 ил.

Группа изобретений относится к управлению ориентацией космических (КА) и авиационных летательных аппаратов (ЛА) с помощью чувствительных элементов. Устройство содержит размещённые на основании датчики (Д) ориентации (гироскопические или звёздные) аппарата относительно инерциальной системы координат. На каждом из указанных Д установлено по два или более Д измерения углов между Д ориентации и основанием. Д измерения углов включают источник и приемник излучения, установленные на основании, и отражающий элемент - на одном из Д ориентации. Данные элементы установлены так, чтобы плоскости падающего и отраженного пучков излучения не были параллельны. Учёт указанных углов (в блоке обработки данных) позволяет исключить влияние погрешностей положения Д ориентации в связанных осях (например, вследствие деформаций конструкции) на измеряемые параметры ориентации аппарата. Техническим результатом группы изобретений является повышение точности определения ориентации КА или ЛА без увеличения жёсткости их конструкции. 2 н. и 4 з.п. ф-лы, 3 ил.

Группа изобретений относится к управлению ориентацией космических (КА) и авиационных летательных аппаратов (ЛА) с помощью чувствительных элементов. Устройство содержит размещённые на основании датчики (Д) ориентации КА относительно астрономических объектов. Для каждого из указанных Д предусмотрены одномерные или двумерные (или их комбинации) Д измерения углов. Последние включают источник и приемник излучения, установленные на основании, и отражающий элемент - на одном из Д определения ориентации. В варианте источники и приемники излучения Д измерения углов могут быть установлены на другом Д ориентации. Данные элементы установлены так, чтобы плоскости падающего и отраженного пучков излучения не были параллельны. Учёт измеряемых Д углов (в блоке обработки данных) позволяет исключить влияние погрешностей положения Д ориентации в связанных осях (например, вследствие деформаций конструкции) на измеряемые параметры ориентации аппарата. Техническим результатом группы изобретений является повышение точности определения ориентации КА или ЛА без увеличения жёсткости их конструкции. 3 н. и 7 з.п. ф-лы, 2 ил.

Группа изобретений относится к управлению ориентацией космических (КА) и авиационных летательных аппаратов (ЛА) с помощью чувствительных элементов. Устройство содержит размещённые на основании датчики (Д) ориентации относительно инерциальной системы координат и относительно астрономических объектов. Каждый Д ориентации снабжен хотя бы шестью Д измерения расстояний, шарнирно закрепленными концами на Д ориентации и на основании устройства. При этом обеспечена непараллельность измеряемых отрезков. Д расстояний включают в себя механический эталон длины и Д смещения. Д связаны с блоком обработки их данных. Учёт смещений Д ориентации (в блоке обработки данных) имеет целью исключить влияние погрешностей положения этих Д в связанных осях ЛА или КА (напр., вследствие деформаций конструкции) на измеряемые параметры ориентации аппарата. Техническим результатом группы изобретений является повышение точности определения ориентации КА или ЛА без увеличения жёсткости и термостабильности их конструкции. 2 н. и 16 з.п. ф-лы, 4 ил.

Группа изобретений относится к управлению ориентацией космических (КА) и авиационных летательных аппаратов (ЛА) с помощью чувствительных элементов. Устройство содержит размещённые на основании датчики (Д) ориентации относительно инерциальной системы координат и относительно астрономических объектов. При этом устройство снабжено, для каждого из указанных Д, одномерными или двумерными (или их комбинацией) Д измерения углов. Последние включают источник и приемник излучения, установленные на основании, и отражающий элемент - на одном из Д определения ориентации. Данные элементы установлены так, чтобы плоскости падающего и отраженного пучков излучения не были параллельны. Углы измеряют, например, между рабочими осями Д ориентации и основанием. Учёт этих углов (в блоке обработки данных) имеет целью исключить влияние погрешностей положения Д ориентации в связанных осях (например, вследствие деформаций конструкции) на измеряемые параметры ориентации аппарата. Техническим результатом группы изобретений является повышение точности определения ориентации КА или ЛА без увеличения жёсткости их конструкции. 2 н. и 11 з.п. ф-лы, 4 ил.

Группа изобретений относится к управлению ориентацией космических (КА) и авиационных летательных аппаратов (ЛА) с помощью чувствительных элементов. Устройство содержит размещённые на основании датчики (Д) ориентации (гироскопические или звёздные) аппарата относительно инерциальной системы координат. Для определения углов между осями Д ориентации и основанием на каждом из Д установлено не менее шести Д расстояния точек Д ориентации от основания. Указанные углы определяются по показаниям Д расстояния из решения прямой задачи кинематики платформы Стюарта для каждого Д ориентации. Учёт указанных углов (в блоке обработки данных) позволяет исключить влияние погрешностей положения Д ориентации в связанных осях (например, вследствие деформаций конструкции) на измеряемые параметры ориентации аппарата. Техническим результатом группы изобретений является повышение точности определения ориентации КА или ЛА без увеличения жёсткости их конструкции. 2 н. и 5 з.п. ф–лы, 3 ил.

Группа изобретений относится к управлению ориентацией космических (КА) и авиационных летательных аппаратов (ЛА) с помощью чувствительных элементов. Устройство содержит размещённые на основании датчики (Д) ориентации относительно инерциальной системы координат и относительно астрономических объектов. При этом каждый из указанных Д снабжён несколькими Д измерения расстояний между этим Д ориентации и основанием (не менее 6 Д), а также (в варианте) между этим Д и другим (или несколькими) Д ориентации. Шарнирное закрепление концов Д расстояний выполнено с обеспечением непараллельности измеряемых отрезков. Д расстояний включает в себя механический эталон дины и Д смещения. Учёт этих смещений (в блоке обработки данных) имеет целью исключить влияние погрешностей положения Д ориентации в связанных осях КА или ЛА (например, вследствие деформаций конструкции) на измеряемые параметры ориентации аппарата. Техническим результатом группы изобретений является повышение точности определения ориентации КА или ЛА без увеличения жёсткости и термостабильности их конструкции. 3 н. и 12 з.п. ф-лы, 2 ил.

Изобретение относится к космической технике и может быть использовано при создании космических средств и систем обзора космического пространства для наблюдения и обнаружения небесных объектов, прежде всего астероидов и комет, опасных для Земли, летящих к Земле со всех направлений, в том числе и со стороны Солнца, определения времени и района падения небесного тела на Землю и выдачи заблаговременного сообщения органам государственного управления и заинтересованным абонентам для предотвращения угрожающего события или принятия мер по снижению катастрофических последствий от возможного столкновения. Технический результат – расширение функциональных возможностей. Для этого космическая система обзора небесной сферы для наблюдения небесных объектов и обнаружения опасных для Земли небесных тел - астероидов и комет - включает в себя наземный информационно-управляющий центр и два космических комплекса. Наземный информационно-управляющий центр системы управляет всеми средствами космической системы, организует обзор космического пространства одновременно двумя космическими комплексами и осуществляет обработку поступающей от них информации. Первый космический комплекс с космическим аппаратом (аппаратами), установленным на геостационарной или близкой к ней геосинхронной орбите, регулярно осматривает всю небесную сферу, кроме околосолнечной области, которую невозможно наблюдать из-за засветки Солнцем аппаратуры наблюдения. Второй космический комплекс с космическим аппаратом (аппаратами), установленным на орбите Земли на расстоянии от 40 млн км до 80 млн км, регулярно осматривает сбоку пространство между Солнцем и Землей, недоступное для наблюдения с Земли. Это пространство представляет собой конус, вершина которого расположена в центре Земли, с осью, направленной на центр Солнца, и углом при вершине, равным углу засветки Солнцем аппаратуры наблюдения космического аппарата первого космического комплекса. Обзор этого конуса ограничивается углом засветки Солнцем аппаратуры наблюдения космического аппарата второго комплекса. Космическая система может быть использована также для исследований космического пространства по различным научным программам. 8 ил.

Изобретение относится к космической технике и может быть использовано при создании космических средств и систем обзора космического пространства для обнаружения астероидов и комет, опасных для Земли. Технический результат - расширение функциональных возможностей. Изобретение включает способ обзора космического пространства между Солнцем и Землей, из-за засветки Солнцем недоступного для наблюдения с Земли или околоземных орбит. Обзор этой части космического пространства производится с одного или двух космических аппаратов, расположенных на орбите Земли на постоянном расстоянии от нее. Обзор космического пространства производится в пределах наблюдаемого с космического аппарата контура конуса с вершиной в центре Земли и осью, направленной на Солнце, ограниченного со стороны Солнца углом засветки Солнцем аппаратуры наблюдения космического аппарата. Полный или частичный обзор данной области космического пространства может осуществляться либо в режиме покадровой съемки с заданной экспозицией, либо в режиме сканирования по полосам с заданной угловой скоростью с использованием матричных фотоприемных приборов с зарядовой связью со считыванием сигналов в режиме с временной задержкой и накоплением. Получаемая информация передается на наземные средства приема информации для ее последующей обработки. 12 з.п.ф-лы, 5 ил.

Изобретение относится к космической навигации. Способ повышения точности определения ориентации по звездам заключается в проецировании изображения звезд через оптическую систему на матричный приемник излучения. Изображения звезд занимают область не менее 2х2 пикселя. Определяют положение взвешенного центра изображения звезд с учетом индивидуальных характеристик пикселей. Данные об индивидуальных характеристиках пикселей время от времени обновляют с помощью датчика путем проведения калибровки, при которой свет от оптической системы перекрывается светонепроницаемым затвором при помощи устройства управления затвором, а матричный приемник излучения однородно освещается калибровочным осветителем. Светонепроницаемый затвор установлен между оптической системой и матричным приемником излучения. Затвор состоит из качалки в виде экранирующего апертуру лепестка с заделанным в качалку магнитом и исполнительного соленоида. Технический результат - повышение точности определения ориентации и поддерживание точности в течение длительного времени в процессе функционирования датчика. 3 н. и 7 з.п. ф-лы, 4 ил.

Изобретение относится к космической навигации и может быть использовано для оперативного точного определения ориентации космического аппарата относительно инерциальной системы координат. Устройство для определения ориентации объекта по звездам содержит корпус, оптическую систему, бленду, матричный приемник излучения, вычислительное устройство, электронную память, содержащую бортовой каталог навигационных звезд. При этом используется колодезная компоновка датчика, в которой оптическая система и бленда объединены в центральный модуль, частично расположенный внутри корпуса датчика, при этом бленда является держателем оптической системы, а центральный модуль является крышкой корпуса. Вокруг центрального модуля размещена электронная единая плата, которая закреплена к боковым стенкам и основанию корпуса винтами. Плата включает гибкие участки, по которым плата изогнута таким образом, чтобы основные тепловыделяющие элементы были прижаты к боковым стенкам корпуса, а матричный приемник излучения к основанию корпуса. При этом сброс тепла со стенок и основания корпуса осуществляется кондуктивным теплообменом за счет теплопроводности через, по меньшей мере, три крепежные лапки основания корпуса и частично за счет лучистого теплообмена с внутренней поверхностью встроенной бленды. В вырез платы под нижней поверхностью матричного приемника излучения установлен термоэлектрический охладитель Пельтье, контактирующий с основанием корпуса через теплопроводящую пасту или прокладку. Технический результат - снижение массы и габаритов устройства, а также увеличение отвода тепла. 2 з.п. ф-лы, 6 ил.

Изобретение относится к космической навигации и может быть использовано для оперативного определения направления на Солнце. Согласно способу с помощью оптико-интерференционной системы получают изображения светящегося кольца, центр которого соосен с направлением Солнца из центральной точки этой системы. Изображения кольца проецируют на матричный фотоприемник. Об угловом положении Солнца судят по положению центра спроецированного светового кольца на фотоприемнике. Устройство содержит сферическую оптико-интерференционную систему, включающую тонкий полусферический мениск с нанесенным на его выпуклую поверхность интерференционным светофильтром, рассеиватель излучения на вогнутой поверхности мениска и отсекающий светофильтр. Кроме того, устройство содержит объектив, матричный фотоприемник и блок управления, обработки и расчета. Технический результат - повышение точности определения угловых координат Солнца. 7 н.п. ф-лы, 4 ил.

Изобретение может использоваться на космических аппаратах (КА) дистанционного зондирования Земли, снимки с которых должны удовлетворять жестким требованиям по координатной привязке, и в качестве средства определения ориентации КА. Телескоп содержит в первом канале главное зеркало, вторичное зеркало, линзовый корректор, регистрирующее устройство, размещенное в фокальной плоскости телескопа, и во втором канале - плоское наклонное эллиптическое зеркало для наблюдения звезд, размещенное в плоскости пересечения первого и второго каналов. Центральная часть обращенной в сторону вторичного зеркала поверхности главного зеркала, на которую попадает свет от Земли, закрыта зеленым отражающим светофильтром. В центральной зоне поперечного сечения второго канала установлена круглая диафрагма, препятствующая попаданию в первый канал той части света от звезд, которая не попадает на плоское наклонное эллиптическое зеркало. Часть обращенной в сторону линзового корректора поверхности регистрирующего устройства закрыта красным пропускающим светофильтром. Технический результат - возможность регистрации достаточного количества звезд одновременно с получением изображения земной поверхности для уменьшения погрешности координатной привязки этого изображения. 1 з.п. ф-лы, 1 ил.

 


Наверх