Патенты автора Муратов Дмитрий Сергеевич (RU)

Изобретение относится к конструкционным композиционным материалам на полимерной основе, а именно к способу получения полимерматричных композитов с наполнителем в виде эксфолиированного гексагонального нитрида бора. Способ включает проведение обработки в изопропиловом спирте ультразвуком в течение 8-24 часов порошка гексагонального нитрида бора, концентрацию которого выбирают в диапазоне 0,5-1,5 г/л, после чего из полученной дисперсии выделяют путем центрифугирования образовавшиеся эксфолиированные частицы гексагонального нитрида бора в надосадочную жидкость, которую смешивают с матричным материалом, изготовленным при растворении 0,9-1,5 г низковязкого полипропилена в 50 мл толуола. При этом количество надосадочной жидкости в смеси выбирают из условия последующего содержания наполнителя в композите в количестве 3-30% мас. Затем проводят выпаривание растворителей из полученной смеси и просушивание оставшейся вязкой массы. Технический результат от реализации изобретения заключается в повышении теплопроводности полимерматричного композита с сохранением его механических свойств, а также в снижении себестоимости материала. 1 табл., 1 пр.

Изобретение относится к технологии полупроводниковых тонкопленочных гибридных фотопреобразователей и может быть использовано при создании солнечных элементов и батареи на основе галогенидных перовскитов. Способ получения полупроводниковых тонкопленочных фотопреобразователей на основе галогенидных перовскитов заключается в том, что в фотопреобразователе, содержащем последовательно размещенные на подложке анодный электрод, селективно-транспортный слой p-типа проводимости, фотопоглощающий слой, селективно-транспортный слой n-типа проводимости и катодный электрод, жидкофазным методом наносят между селективно-транспортным слоем n-типа проводимости и катодным электродом буферный слой, выполненный в виде композита, изготовленного путем диспергирования максенов Ti3C2Tx, где Тх - смесь функциональных групп F-, Cl-, О-, ОН-, при их концентрации от 0,50 мг/мл до 0,75 мг/мл в разбавленных растворах низкомолекулярных органических полупроводников в органических обезвоженных растворителях с концентрацией 0,5 мг/мл. Изобретение обеспечивает многократное повышение стабильности приборных характеристик фотопреобразователей при воздействии света и повышенных температур. 5 з.п. ф-лы, 4 табл., 9 ил., 3 пр.

Изобретение может быть использовано в химической промышленности и сельском хозяйстве для обработки пористых систем, в том числе различных видов почв, с целью подавления активности патогенных микроорганизмов. Сначала синтезируют трисульфид циркония из металлического циркония и порошка элементарной серы, взятых в стехиометрическом соотношении в соответствии с реакцией Zr+3S=ZrS3, запаянных в кварцевые ампулы в вакууме не хуже 10-3 бар. Синтез проводят в трубчатой печи 48-72 ч при температуре в горячей зоне 700-900°С при градиенте, создаваемом за счёт температуры в более холодной зоне до 700°С. Полученные кристаллы ZrS3 в концентрации 0,001-0,01 г/л при ультразвуковой обработке диспергируют в суспензии, содержащей деионизованную воду и 0,1-1 г/л частиц оксида графена. Полученные коллоидные растворы представляют собой стабильные в воде дисперсии с выраженным противомикробным действием. 2 ил., 1 пр.

Изобретение может быть использовано при обработке почв, пористых структур и сточных вод с целью подавления активности патогенных микроорганизмов. Способ получения коллоидных растворов трисульфида циркония в деионизированной воде включает синтез трисульфида циркония из металлического циркония и порошка элементарной серы, запаянных в кварцевые ампулы. Синтез проводят в трубчатой печи в течение 24 или 48 ч при температуре 650-900°С в вакууме не хуже 10-3 бар. Полученные кристаллы диспергируют в деионизированной воде в концентрации от 0,001 до 1 г/л при ультразвуковой обработке. Затем проводят центрифугирование при 6000 об/мин в течение 15 мин и отделение осадка. Изобретение позволяет получать коллоидные растворы, обладающие противомикробной активностью, без необходимости применения антибиотиков широкого спектра действия, обеспечить возможность длительного хранения порошкового компонента перед приготовлением растворов. 1 ил., 1 пр.

Изобретение относится к технологии получения перовскитных структур для тонкопленочных оптоэлектронных устройств в технологических процессах производства светодиодов, солнечных элементов и фотодетекторов со спектральным диапазоном от 400 до 780 нм, запрещенной зоной от 3,1 до 1,57 эВ. Способ химического осаждения сплошных пленок со структурой перовскита со структурной формулой АРbХ3 для производства фотовольтаических устройств, светодиодов и фотодетекторов, где А является катионом в виде СН3NН3+, или (NH2)2CH+, или С(NН2)3+, или Cs+, или их смеси, X является анионом в виде Сl-, или Вr-, или I-, или их смеси, из газовой фазы, заключается в размоле компонентов синтеза АХ и РbХ2 в молярном соотношении в диапазоне от 1:4 до 1:1 в шаровой мельнице в режиме 12 циклов по 5 мин при 400 об/мин до образования стехиометрического соединения, последующей загрузке продуктов размола в зоне нагрева и испарения компонентов синтеза, размещении плоской подложки в зоне нагрева и осаждении продуктов синтеза, обеспечении давления 10 Па в реакционном объеме и потока транспортировочного газа в направлении от зоны нагрева компонентов реакции к зоне осаждения продуктов реакции, увеличении температуры в зоне нагрева до испарения компонентов синтеза, увеличении температуры в зоне осаждения продуктов реакции, формировании фотоактивного перовскитного фотолюминесцентного слоя путем химического осаждения из газовой фазы на подложке в зоне осаждения продуктов синтеза при температуре, повышенной до 305°С и поддерживаемой до завершения процесса. Технический результат заключается в упрощении процесса производства, а именно одностадийной и малоотходной технологии без использования растворителей, адаптированной к серийному производству и пригодной для создания широкоформатных пленок со структурой перовскита на плоской подложке площадью до 1 м2, что позволяет масштабировать размер устройств от 0,1 см2 до 1 м2. 4 ил., 1 пр.

Изобретение может быть использовано при обработке почв, пористых структур и сточных вод с целью подавления активности патогенных микроорганизмов. Для получения коллоидных растворов трисульфида титана в деионизированной воде, обладающих противомикробной активностью, проводят синтез трисульфида титана из металлического титана и порошка элементарной серы, взятых в стехиометрическом соотношении в соответствии с реакцией Ti+3S=TiS3. Металлический титан и порошок элементарной серы запаивают в кварцевые ампулы в вакууме не хуже 10-3 бар. Синтез проводят в трубчатой печи в течение 24 или 48 часов при температурах от 450 до 500°С при градиенте температуры. Полученные кристаллы диспергируют в деионизированной воде в концентрации от 0,001 до 0,01 г/л при ультразвуковой обработке. Затем проводят центрифугирование и отделение верхней части дисперсии перед применением. Изобретение позволяет получить противомикробный раствор без использования антибиотиков широкого спектра действия, с возможностью длительного хранения порошкового компонента перед приготовлением дисперсии, уменьшить вред для окружающей среды. 2 ил., 1 пр.

Изобретение относится технологии изготовления фотовольтаических преобразователей. Согласно изобретению предложен способ изготовления фотовольтаических (ФВЭ) элементов с использованием прекурсора для жидкофазного нанесения полупроводниковых слоев р-типа, включающий получение прекурсора [Сu(NН3)4](ОН)2 растворением Сu(ОН)2 в насыщенном растворе аммиака в этиленгликоле с концентрациями от 5 до 100 мг/мл, прогрев подложки, формирование слоя нестехиометрического оксида меди путем жидкофазного нанесения раствора методом вращения подложки (центрифугирования) на слой оксида индия, допированного фтором, на стекле в режиме вращения, от 2500 до 3500 об/мин в течение 30-90 секунд, с последующим отжигом при температуре 150-300°С в течение 1 часа, нанесение методом центрифугирования подложки слоя перовскита, нанесение аналогичным образом на слой перовскита полупроводящего органического слоя метилового эфира фенил-С61-масляной кислоты, а затем батокупроина, терморезистивное напыление проводящих контактов на основе серебра. Изобретение обеспечивает возможность варьировать толщину получаемого слоя ФВЭ за счет изменения концентрации медьсодержащего прекурсора, а также снижение температуры получения полупроводникового дырочно-транспортного слоя, что обеспечивает возможность их применения в рамках таких технологических процессов как струйная печать на гибких подложках и нанесения методом вращения подложки. 1 табл., 2 ил.

Изобретение относится к технологии полупроводниковых тонкопленочных гибридных фотопреобразователей. Гибридные, тонкопленочные фотопреобразователи с гетеропереходами и слоями, модифицированными максенами Ti3C2Tx, работающие в видимом спектре солнечного света, а также ближних УФ и ИК областей (300-780 нм). Гибридный тонкопленочный фотопреобразователь согласно изобретению содержит прозрачную подложку, на которую последовательно нанесены прозрачный электрод и фотоактивный слой, расположенный между транспортными селективнопроводящими слоями р и n типа проводимости, на верхнем из которых размещен непрозрачный электрод, при этом фотоактивный слой выполнен из гибридных перовскитов АРbХ3, где: А - органические или неорганические катионы вида (CH3NH3+; CH5N2+; Cs+; CH6N3+; (NH3)BuCО2H+), Х3 - галогенидные элементы ряда 1; Br; Сl, а на всех границах гетеропереходов и на границах металл-полупроводник расположены слои максенов Ti3C2Tx, толщиной 5-50 нм, где: Тх - функциональные группы, которыми терминирована поверхность двумерных материалов, Тх=О-, ОН-, F-. Техническим результатом настоящего изобретения является повышение коэффициента полезного действия (КПД) за счет увеличения холостого напряжения устройств болеем чем на 10% до величин >1,10 В, а также увеличении фактора заполнения вольтамперных характеристик устройств более чем на 5% (>0,75) за счет снижения токовых шунтирующих утечек и повышении контактного сопротивления. 8 з.п. ф-лы, 2 ил.

Изобретение относится к области полимерных композиционных материалов, предназначенных для изготовления полимерматричных композитов, требующих повышенных значений электропроводности. Теплоэлектропроводный полиолефиновый композит, наполненный углеродными нанотрубками, содержит полиолефиновый эластометр и смесь полисилоксанов, содержащую полиметилсилоксан и маслорастворимую полиэтилсилоксановую жидкость, с углеродными нанотрубками. Технический результат заключается в повышении электрофизических свойств полимерматричных материалов и в снижении концентрации углеродных нанотрубок. 1 табл., 1 пр.

Изобретение относится к области полимерных композиционных материалов, предназначенных для изготовления полимерматричных композитов, требующих повышенных значений электропроводности. Полиолефиновый композит на основе эластомера, модифицированного углеродными нанотрубками, содержит полисилоксаны следующей структуры (-R1R2Si-O-R3R4Si-)m, где Ri - H, -CnH2n+1 при n = 1-20, при следующем соотношении компонентов, мас.%: многостенные углеродные нанотрубки 10-25; полисилоксаны 2-5; полиолефиновый эластомер - остальное. Обеспечивается повышение электропроводности полимерматричных материалов. 1 табл., 1 пр.

Изобретение относится к технологии отделки волокнистых материалов и касается способа получения нетканых материалов с антибактериальными свойствами. Способ включает обработку материала раствором, содержащим наноструктурные частицы металла или оксида при температуре 20±5°С, и последующее высушивание, при этом нетканый материал подвергают предварительной обработке ультразвуком для активации поверхности и дальнейшей обработке путем его погружения в раствор или набрызгивания раствора, содержащего заранее приготовленные наноразмерные коллоидные частицы с металлов или оксидов с концентрацией 0.1-5% от веса материала, с последующим высушиванием материала при температуре от 60 до 100°С до постоянного веса. Изобретение позволяет упростить технологию приготовления материала с требуемыми антибактериальным характеристиками, повысить прочность и равномерность закрепления наночастиц на поверхности и в структуре материала, что особенно необходимо при разработке комплектов мембранных носителей для транспортировки (хранения) биологического материала в ветеринарной лабораторной диагностике и эпизоотологическом мониторинге, в виде сухих пятен, нанесенных на носитель. 5 з.п. ф-лы, 4 ил., 1 табл., 2 пр.

Изобретение относится к области электрорадиотехники, а именно к технологии разработки полимерных композиций для охлаждающих элементов, таких как радиаторы светоизлучающих диодов. Композиция содержит полимерную матрицу из полипропилена и смесь углеродных волокон и углеродных нанотрубок с дисперсностью менее 100 нм и массовом соотношении углеродных волокон и углеродных нанотрубок в смеси 9:1. При изготовлении полимерной композиции смешивают раствор полимерной матрицы из полипропилена в органическом растворителе и смесь углеродных волокон и углеродных нанотрубок в режиме ультразвуковой кавитационной обработки. После чего ведут осаждение полученного золя в ледяном ацетоне, с последующей промывкой и сушкой. Полученная полимерная композиция обладает улучшенными свойствами теплопроводности для эффективного теплоотвода и повышения физико-механических, оптических показателей светоизлучающих диодов. 2 н.п. ф-лы, 4 ил.

Изобретение относится к порошковой металлургии, в частности к получению модифицированных нанопорошков оксида цинка. Может использоваться в качестве строительных герметиков, работающих при высоких деформирующих нагрузках и требующих повышенных значений обратимых относительных удлинений. Модифицированный порошок оксида цинка получают путем осаждения из раствора соли. Полученный порошок обрабатывают в разбавленном растворе полимера в неполярном растворителе, после чего проводят термическую обработку для полимеризации полученного покрытия. Обеспечивается повышение предела прочности на разрыв и степени деформации строительных герметиков. 6 ил., 2 табл., 1 пр.

 


Наверх