Патенты автора Наумов Сергей Владимирович (RU)

Изобретение относится к технологии получения монокристалла диоксида титана ТiO2, который представляет собой широкозонный полупроводник для применения в коррозионно-стойких покрытиях, пигментах, газовых датчиках, медицинских имплантатах, оптических активных покрытиях, фотокатализе, солнечной энергетике. Способ получения монокристалла диоксида титана бестигельной зонной плавкой в атмосфере воздуха включает формирование заготовки в форме бруска путем прессования порошка из ТiO2 и спекания в течение 6 ч на воздухе, формирование монокристаллической затравки из ТiO2, размещение верхнего штока с заготовкой над затравкой, размещенной на нижнем штоке, расплавление заготовки и затравки, выращивание монокристалла ТiO2 при одновременном вертикальном и вращательном движении верхнего штока с заготовкой, при этом предварительно для формирования поликристаллической заготовки порошок ТiO2 отжигают на воздухе при температуре 1200°С в течение 6 ч, спекание полученного бруска проводят при температуре 1350°С, а выращивание осуществляют в вертикальном направлении при скорости движения верхнего штока с заготовкой, равной 8-12 мм/ч, скорости его вращения 1-4 об/мин и скорости движения нижнего штока с затравкой, составляющей 10-14 мм/ч, в отсутствие его вращения. Полученный монокристалл диоксида титана имеет стабильную тетрагональную структуру, содержит только одну фазу, обладает минимальной дефектностью, характеризуется стабильностью свойств при высокотемпературных воздействиях. 3 ил., 2 пр.

Изобретение относится к микроэлектронике и может быть использовано при изготовлении электропроводящих слоёв в микроэлектронных слоистых структурах. Сначала готовят смесь поликристаллического порошка диоксида титана и титана, взятых в массовом соотношении (59-60):(40-41)соответственно. Полученную смесь спекают при 1480-1520oC в вакууме 10-3 Па в течение 24 ч, прессуют и формируют заготовку. Затем осуществляют селективное плавление поверхности заготовки и затравки из монокристалла монооксида титана с использованием двух биэллипсоидных зеркал, установленных в вертикальной конфигурации, и ксеноновой лампы мощностью 5 кВт в качестве источника излучения, расположенной в фокальной точке нижнего зеркала, в условиях бестигельной зонной плавки в атмосфере аргона чистотой 99,998 при его постоянном давлении 7-9 бар. Зона расплава находится в фокальной точке верхнего зеркала. Плотность светового потока, попадающего на зону расплава, регулируют механическим или автоматическим перемещением шторок из нержавеющей стали. Скорость передвижения нижнего штока с заготовкой в вертикальном направлении 2-5 мм/ч, скорость движения верхнего штока с затравкой из монокристалла монооксида титана 5-9 мм/ч, скорость вращения верхнего штока 2-4 об/мин. Полученный монокристалл монооксида титана имеет стехиометрический состав TiO1,00, стабильную неупорядоченную кубическую структуру, содержит только одну фазу, обладает минимальной дефектностью и сохраняет свои свойства при высокотемпературных воздействиях. 3 ил., 2 пр.

Изобретение относится к технологии получения новых соединений с высокими значениями магнитосопротивления и может быть использовано в химической промышленности, микроэлектронике, для создания магниторезистивных датчиков в криогенной и космической магнитометрии. Манганит лантана, легированный кальцием, получают реакцией из окислов лантана, марганца и кальция, путем их перетирания, первого отжига на воздухе при 1350±50°С, охлаждения до комнатной температуры, повторного перетирания и прессования полученного материала в таблетки, повторного отжига его на воздухе при 1350±50°С, последующего отжига в кислороде и охлаждения до комнатной температуры, при этом получают образцы состава La1-xCaxMn1-zO3, в которых концентрацию кальция выбирают 0,05<x<0,22, концентрацию марганца выбирают 0<z≤0,05, первый отжиг на воздухе проводят в течение 12 часов, повторный второй отжиг на воздухе проводят в течение 4 часов, отжиг в кислороде проводят при Т=650±20°С в течение 50 часов, а последующее охлаждение до комнатной температуры проводят на воздухе со скоростью не менее 10°С/мин. Полученный материал является простым в изготовлении и сравнительно недорогим, имеет высокое магнитосопротивление в широкой области температур 5-300 К и особенно высокие значения магнитосопротивления (более 106 %) при азотных и гелиевых температурах. 5 ил., 3 табл.

 


Наверх