Патенты автора Мартынов Вячеслав Иванович (RU)

Изобретение относится к способу ориентирования летательного аппарата (ЛА) с оптической головкой самонаведения (ГСН) при движении по баллистической траектории. Для ориентирования ЛА до его старта рассчитывают время попадания в поле зрения ГСН области Земли, после старта ЛА включают ГСН, осуществляют визирование широкоугольным матричным приемником ГСН неба и Земли, на восходящем участке баллистической траектории определяют яркость или цвет неба и Земли, определяют крен ЛА по разнице яркости или цвета неба и Земли, используя матричный приемник определенным образом, осуществляют поворот ЛА по крену до расположения области неба на строках матричного приемника выше области Земли. Обеспечивается повышение точности ориентирования ЛА при любых относительных значениях яркости неба и Земли. 1 з.п. ф-лы, 1 ил.

Изобретение относится к области авиационно-космической техники, а более конкретно к головным отсекам (ГО) ЛА. ГО сверхзвукового ЛА включает лобовую поверхность с аэродинамической иглой (АИ) и боковую обечайку. Лобовая поверхность ГО выполнена соосной ступенчатой. Периферийная ступень выполнена в виде радиопрозрачного кольца. Дно центральной вогнутой или вершина центральной выпуклой ступени выполнены в виде кольца с 1-8 оптически прозрачными иллюминаторами. ГО может дополнительно иметь баллон с газом поддува и систему редуцирования газа. При этом отверстия подачи газа на лобовую поверхность ГО выполнены в корневой части АИ либо внутренней части центральной ступени. Достигается расширение диапазона скоростей полета ЛА. 18 з.п. ф-лы, 3 ил.

Изобретение относится к автономным системам конечного наведения летательных аппаратов (ЛА). Достигаемый технический результат - селекция морской цели (МЦ) оптико-электронной системы (ОЭС) конечного наведения ЛА, в том числе в условиях естественных и преднамеренных помех, посредством комплексирования пассивного тепловизионного и активного лазерного каналов. Указанный результат достигается тем, что в состав ОЭС ЛА включают пассивный тепловизионный канал (ТК) с матричным фотоприемным устройством (ФПУ) и активный импульсный лазерный канал (ЛК) с сонаправленными визирными осями, спектральный диапазон работы ЛК располагают внутри спектрального диапазона работы ТК, работу ЛК начинают после определения пеленга на МЦ посредством ТК либо другого (всепогодного) бортового канала селекции, устройство вывода и приема лазерного излучения ЛК стабилизируют по углам курса и тангажа относительно инерциальной системы координат ЛА, расходимость лазерного излучения выполняют в диапазоне от 0,1 до 8,0 мрад, частоту следования лазерных импульсов задают на уровне не менее 10 Гц, а принятое ФПУ ТК изображение синхронизируют с излучением ЛК с обеспечением работы по временному стробу, соотнесенному с дальностью до МЦ, полученной приемным устройством ЛК, при этом наличие МЦ определяют по ее одновременной фиксации по пеленгу приемными устройствами ТК и ЛК. 8 з.п. ф-лы, 1 ил.

Изобретение относится к управляемым летательным аппаратам (ЛА) различных типов базирования. Технической задачей предлагаемого изобретения является создание способа навигации ЛА с радиолокационными и/или оптическими корреляционно-экстремальными системами конечного наведения (КЭСКН), позволяющего рационально с позиции критерия «эффективность-стоимость» реализовать необходимую точность привязки наблюдаемых изображений местности при использовании бортовой системы инерциальной навигации (СИН) с уровнем точности не выше среднего. Решение указанной технической задачи достигается тем, что при полетной навигации ЛА, включающей съемку местности бортовой КЭСКН с привязкой к осям бортовой СИН, сравнение наблюдаемого и предварительно подготовленного и размещенного в бортовом вычислителе (БВ) эталонного изображения, определение БВ положения ЛА относительно цели и пеленга на цель, - на ЛА размещают с привязкой к связанной системе координат (СК) не менее одной телевизионной камеры (ТВК) с матричным фотоприемным устройством (МФПУ), предварительно в БВ вводят каталог звездного поля с координатами звезд не более +5m по уровню блеска, сидерическое время пуска ЛА, стартовые географические координаты ЛА, после пуска ЛА при его выходе на пассивный участок траектории (ПУТ) посредством бортовых органов управления приводят угловые скорости ЛА по всем осям к близким к нулевым значениям по измерениям бортовой СИН, на ПУТ выше 20 км производят посредством ТВК не менее одной обсервации звездного поля, при этом осуществляют стабилизацию поля зрения ТВК по измерениям бортовой СИН, уход углового положения каждой из осей СИН на момент времени обсервации определяют в БВ как разность значений углового положения зафиксированного посредством МФПУ ТВК направления на ориентир звездного поля в связанной СК ЛА и расчетного направления на этот же ориентир относительно оси СИН в связанной СК ЛА, вычисленные значения уходов каждой из осей СИН сохраняют в БВ, по дальности до цели в БВ вычисляют поправку к угловому положению местной вертикали, возникающую вследствие кривизны земной поверхности, а в процессе навигации ЛА осуществляют съемку местности КЭСКН с привязкой к осям СИН с учетом вычисленных уходов и поправок. 12 з.п. ф-лы, 2 ил.

Изобретение относится к управляемому ракетному оружию (УРО) классов «поверхность - поверхность», «воздух - поверхность». Технической задачей предлагаемого изобретения является такое управление полетом баллистического летательного аппарата (ЛА), при котором обеспечивается сохранение расчетных (допустимых по условиям эксплуатации) значений теплопритоков на конструктивные элементы (в том числе иллюминаторы) головной части (ГЧ) за счет аэродинамического торможения ЛА на конечном атмосферном участке траектории (КАУТ). Дополнительно, появляются возможности эффективного применения ложных целей (ЛЦ). Указанная техническая задача решается для баллистического ЛА (например, ракеты либо отделяемой ГЧ ракеты) следующим образом. При управлении полетом баллистического летательного аппарата (включающем ракетный разгон ЛА на активном участке траектории, свободное движение ЛА на пассивном участке траектории и управляемое движение ЛА на конечном атмосферном участке траектории) разгон ЛА осуществляют с установленным на ЛА головным обтекателем, на КАУТ ЛА аэродинамически тормозят до скорости М=1…8, на высоте 25…5 км при углах атаки и скольжения ЛА не более ±5 градусов сбрасывают головной обтекатель (ГО) и уводят его в сторону от траектории полета ЛА. 12 з.п. ф-лы, 6 ил.

Изобретение относится к азимутальному прицеливанию мобильных пусковых установок (ПУ) ракетно-артиллерийского вооружения сухопутных войск при стрельбе по ненаблюдаемой цели. Техническим результатом предлагаемого изобретения является повышение точности азимутального прицеливания пусковой установки, в т.ч. со сменными транспортно-пусковыми контейнерами (ТПК) с ракетами класса «земля - земля», при минимизации действующих на спутниковый измеритель неблагоприятных воздействий от специфической целевой работы ПУ. Подъемно-поворотную ПУ и спутниковый измеритель располагают на мобильном шасси (МШ) длиной не менее 3 м. Посредством антенн спутникового измерителя формируют базовое направление (БН) в диапазоне углов между продольной осью и диагональю МШ в плане. Одну антенну измерителя устанавливают в передней, а вторую антенну измерителя устанавливают в задней оконечности МШ стационарно либо на раскладной штанге. Производят координатную привязку БН к связанному с МШ неподвижному угломерному лимбу ПУ. Разворот ПУ по направлению стрельбы производят относительно БН, зафиксированного посредством угломерного лимба. 8 з.п. ф-лы, 8 ил.

Изобретение относится к военной технике, преимущественно к тактическим и оперативно-тактическим комплексам управляемого ракетного оружия (УРО) с баллистическими (аэробаллистическими) и высотными крылатыми ракетами. В состав оптико-электронной корреляционно-экстремальной СН ракеты дополнительно вводят лазерный высотомер (ЛВ). Функционирование СН начинают на удалении от цели и при высоте полета ракеты 1…20 км, при этом, в случае приема ЛВ отраженных подстилающей поверхностью сигналов выше порогового уровня, производят корреляционно-экстремальную привязку к подстилающей поверхности и коррекцию пикирующей траектории ракеты вплоть до окончания полета. В случае приема ЛВ отраженных сигналов ниже порогового уровня, осуществляют программный маневр ракеты в плоскости стрельбы с выходом на участок пологого планирования на высоте 100…500 м за 0,5…15,0 км от цели, производят корреляционно-экстремальную привязку к подстилающей поверхности и коррекцию планирующей траектории ракеты, с пикирующим конечным участком за 0,1…2,0 км от цели, вплоть до окончания полета. Изобретение позволяет расширить погодный диапазон применения ракет. 2 ил.

Изобретение относится к вычислительной технике и может быть использовано при формировании эталонной информации (изображений) для корреляционно-экстремальных навигационных систем летательных аппаратов (ЛА). Техническим результатом является повышение эффективности планирования и подготовки полетных заданий летательных аппаратов. Устройство автоматизированного формирования эталонной информации для навигационных систем содержит: блоки памяти, сумматоры, регистры, блоки сравнения группы, коммутаторы группы, блоки элементов И/ИЛИ, дешифраторы, счетчики, блоки задержки, генератор тактовых импульсов, триггер, логический блок подготовки яркостных эталонов, включающий блок преобразования исходных картографических данных, аэрофотоснимков и космоснимков, формирователь одноканального или многоканального поля информативности, блок поиска экстремумов поля информативности, блок сопоставления экстремумов поля информативности каждого из каналов, блок расчета эталонных изображений, блок буферной памяти и связи между указанными элементами. 2 ил.

Изобретение относится к авиационной и ракетно-космической технике, а именно к головным отсекам (ГО) летательных аппаратов (ЛА). ГО ЛА содержит переднюю панель в виде клина с плоскими иллюминаторами, осесимметричную с переменным сечением боковую обечайку со стыковочным шпангоутом, складную телескопическую аэродинамическую иглу. Иллюминаторы выполнены с различным диапазоном пропускания. Боковая обечайка выполнена биконической, оживальной, параболической, в виде сплайна или их комбинаций. В боковой обечайке выполнена призматическая, цилиндрическая, оптически- и радиопрозрачная вставка. Передняя панель и часть боковой обечайки выполнены поворотными и отделены от неподвижной части герметичной мембраной и в плоскости их разделения установлен подшипник. На внутренней стороне боковой обечайки и передней панели установлена теплоизоляция, на внутренней стороне иллюминаторов установлены сдвигающиеся теплоизолирующие накладки. Изобретение позволяет повысить точность наведения ГО ЛА. 18 з.п. ф-лы, 7 ил.

 


Наверх