Патенты автора Ситников Александр Викторович (RU)

Изобретение относится к технологии получения полупроводниковых материалов и может быть использовано при создании полупроводниковых приборов (фотоприемники ультрафиолетового диапазона, светоизлучающие диоды, датчики температуры и давления). Техническим результатом изобретения является получение нанокристаллической пленки карбида кремния заданной толщины на кремниевой подложке с преимуществами уменьшения времени синтеза за счет активации твердофазного синтеза фотонной обработкой излучением ксеноновых ламп. Сущность изобретения заключается в способе синтеза нанокристаллических пленок карбида кремния заданной толщины в диапазоне от 0,1 мкм до 1,2 мкм на подложке Si, включающим создание на подложке методом ионно-лучевого распыления многослойных периодических гетероструктур Si/C/…Si/С и последующий отжиг методом фотонной обработки для активации твердофазного синтеза. В качестве источника некогерентного света используют импульсные ксеноновые лампы с диапазоном излучения 0,2-1,2 мкм. Обработку кремниевой подложки с нанесенной многослойной гетероструктурой осуществляют пакетами импульсов длительностью 10-2 с в течение 1,5-3 с, плотность энергии излучения, поступающей на образец, составляет 240-284 Дж⋅см-2. 2 ил.

Изобретение относится к области микро- и наноэлектроники, а именно к технологии изготовления синаптического мемристора на основе нанокомпозита металл-нестехиометрический оксид, который обладает адаптивными (нейроморфными) свойствами. Техническим результатом является создание мемристивных структур Cr/Cu/Cr/(Co40Fe40B20)x(LiNbO3-y)100-x/Cr/Cu/Cr с использованием нестехиометрических оксидов, способных моделировать свойства биологических синапсов и одновременно обладающих повышенной устойчивостью к циклическим резистивным переключениям. Для его достижения предложен способ формирования синаптического мемристора на основе нанокомпозита металл-нестехиометрический оксид, заключающийся в последовательном осаждении слоев на подложку, при этом, методом ионно-лучевого распыления последовательно осаждают на ситалловые подложки слой Cr/Cu/Cr, являющийся нижним электродом, слой нанокомпозита металл-нестехиометрический оксид и слой Cr/Cu/Cr, являющийся верхним электродом. В нанокомпозите металл-нестехиометрический оксид в качестве оксида используют сегнетоэлектрик LiNbO3, а в качестве металла - аморфный сплав Co40Fe40B20. Осаждение нанокомпозита металл-нестехиометрический оксид проводят с недостатком кислорода толщиной 2,5-3,5 мкм и с содержанием металла на 2-4 ат.% ниже порога перколяции хр ≈ 15 ат.% на подложки, имеющие комнатную температуру. 4 з.п. ф-лы, 6 ил.

Изобретение относится к вакуумно-плазменной обработке и может быть использовано при создании устройств и способов для исследования свойств нанокомпозитов. Кварцевый реактор для исследования температурной зависимости электрического сопротивления высокорезистивных объектов, преимущественно, пленочных образцов из нанокомпозиционных материалов, содержит корпус, на внешней поверхности которого бифилярно намотан резистивный нагреватель. Внутри корпуса на растяжках, выполненных в виде пружин из вольфрамовой проволоки, установлены С-образные зажимы с плоскими губками для размещения исследуемого образца, выполненные из вольфрамовой проволоки, причем в стенке корпуса, в центральной его части, установлена термопара с возможностью радиального перемещения и измерения температуры упомянутого образца, размещаемого в С-образных зажимах. Технический результат - повышение точности определения температурной зависимости электрического сопротивления высокорезистивных объектов и расширение размеров исследуемых образцов. 1 ил.

Изобретение относится к наноэлектронике и наноэлектромеханике. Заявленный кварцевый реактор для исследования температурной зависимости электрического сопротивления высокорезистивных объектов, преимущественно, пленочных образцов из нанокомпозиционных материалов, содержит корпус, на внешней поверхности которого бифилярно намотан резистивный нагреватель; внутри корпуса на растяжках, выполненных в виде пружин из вольфрамовой проволоки, установлены C-образные зажимы с плоскими губками для размещения исследуемого образца, выполненные из вольфрамовой проволоки, причем в стенке корпуса, в центральной его части, установлена термопара с возможностью измерения температуры упомянутого образца, размещаемого в C-образных зажимах. 1 ил.

Изобретение относится к области наноэлектроники и может быть использовано в различных областях наноиндустрии. Заявлен способ исследования температурной зависимости электрического сопротивления пленочных образцов при нагреве. Для нагрева пленочного образца и измерения его электрического сопротивления образец помещают в кварцевый реактор, содержащий корпус, на внешней поверхности которого бифилярно намотан резистивный нагреватель, а в стенке корпуса, в центральной его части, установлена термопара с возможностью измерения температуры упомянутого образца. Причем образец внутри корпуса устанавливают в С-образных зажимах с плоскими губками, которые выполняют из вольфрамовой проволоки. С-образные зажимы раскрепляют на растяжках, которые выполняют в виде пружин из вольфрамовой проволоки меньшего диаметра. После чего при помощи резистивного подогревателя, размещенного на поверхности корпуса, производят нагрев образца до заданной температуры. Через С-образные зажимы и растяжки на образец подают измерительный ток и определяют напряжение. Необходимое расстояние от поверхности образца до измерительного элемента термопары и его центрирование по отношению к термопаре осуществляют при помощи упомянутых растяжек. Технический результат - повышение точности получаемых данных. 1 ил.

Изобретение относится к наноэлектронике и наноэлектромеханике. Для нагрева пленочного образца и измерения его электрического сопротивления помещают образец в корпус кварцевого реактора. Внутри корпуса образец размещают в С-образных зажимах с плоскими губками, выполненными из вольфрамовой проволоки. Образец устанавливают в плоских губках с натягом, величина которого достаточна для удержания образца в заданном положении при нагреве С-образных зажимов. С-образные зажимы раскрепляют на растяжках, выполненных в виде пружин из вольфрамовой проволоки меньшего диаметра. При помощи резистивного подогревателя, размещенного на поверхности корпуса, производят нагрев образца до заданной температуры. Через С-образные зажимы и растяжки на образец подают измерительный ток и определяют напряжение. Измерение температуры образца осуществляют при помощи термопары, которую предварительно устанавливают в центральной части корпуса. Необходимое расстояние от поверхности образца до измерительного элемента термопары и его центрирование по отношению к термопаре осуществляют при помощи упомянутых растяжек. Обеспечивается стабильность электрического контакта и равномерный прогрев образцов. 1 ил.

Изобретение относится к области материаловедения, а именно к определению критической концентрации одной из фаз в многофазной системе. Способ определения концентрационного положения порога перколяции в наногранулированных композитных материалах с системой фаз металл-диэлектрик включает определение концентрации металлической фазы и определение электрического сопротивления композитных материалов до и после термообработки. Термообработку проводят в виде 30-минутных вакуумных изотермических отжигов при температурах 400°C, 450°C и 500°C. За концентрационное положение порога перколяции принимают такую концентрацию металлической фазы, при которой сопротивление композитного материала после проведения указанных термообработок не изменяется. Обеспечивается надежное определение порога перколяции в наногранулированных материалах с системой фаз металл-диэлектрик. 1 ил., 1 пр.
Изобретение относится к области материаловедения, в частности к способам определения критической концентрации одной из фаз в многофазной системе. Способ определения типа матрицы композитов металл-диэлектрик основан на том, что для определения типа матрицы предварительно измеряют электрическое сопротивление образца композита металл-диэлектрик при комнатной температуре, после чего указанный образец подвергают вакуумному изотермическому отжигу при температурах 300-400°C в течение 30 минут, после чего определяют электрическое сопротивление отожженного материала и сравнивают его с исходным значением. По увеличению значения электрического сопротивления образца устанавливают, что концентрация металлической фазы композита ниже значения, соответствующего порогу перколяции, и матрицей является диэлектрическая фаза со всеми соответствующими характеристиками, а при уменьшении значения электрического сопротивления композитного материала после термообработки определяют, что сплошной средой испытуемого композита является металлическая фаза.

Группа изобретений относится к вакуумно-плазменной обработке композитов. Установка для наводораживания тонкопленочных композитов в водородной плазме содержит СВЧ-печь и установленный внутри нее кварцевый реактор. Реактор состоит из корпуса в виде полого цилиндра и установленных на его торцах диэлектрических фланцев с хвостовиками для соединения с вакуумными шлангами, один из которых предназначен для подачи водорода, а другой - для вакуумирования СВЧ-печи и реактора. Один из фланцев выполнен с возможностью его снятия, при этом каждый из фланцев состоит из наружной оболочки, крышки, уплотнения и профилированной прокладки из кварцевого стекла с центральным отверстием. Способ включает размещение композитов внутри реактора, вакуумирование реактора и СВЧ-печи, подачу водорода в реактор и осуществление его промывки и СВЧ-печи водородом, затем в реакторе путем СВЧ-разряда зажигают водородную плазму и производят обработку водородом композитов с дополнительным вакуумированием СВЧ-печи в процессе обработки. Обеспечивается улучшение условий воздействия плазмы на композит в процессе непрерывной обработки. 2 н.п. ф-лы, 2 ил.

Изобретение относится к вакуумно-плазменной обработке композитов. При обработке нанокомпозитов в водородной плазме используют установку, содержащую СВЧ-печь, установленный внутри печи кварцевый реактор для размещения в нем нанокомпозитов, состоящий из корпуса в виде полого цилиндра из кварцевого стекла и установленных на его торцах с использованием вакуумного уплотнения из термостойкой резины диэлектрических фланцев с хвостовиками для соединения с вакуумными шлангами, один из которых предназначен для подачи водорода в кварцевый реактор и снабжен натекателем, а другой - для вакуумирования СВЧ-печи и реактора при помощи механического насоса. Для обработки нанокомпозиты размещают внутри реактора, производят вакуумирование СВЧ-печи и реактора путем откачки воздуха при открытом натекателе, после чего производят подачу водорода в реактор и осуществляют промывку СВЧ-печи и реактора водородом, затем натекатель прикрывают для достижения рабочего давления в реакторе, после чего в кварцевом реакторе путем СВЧ-разряда зажигают водородную плазму и производят обработку водородом нанокомпозитов. Обеспечивается непрерывная обработка нанокомпозитов. 1 з.п. ф-лы, 2 ил.

Изобретение относится к вакуумно-плазменной обработке композитов. Установка для обработки нанокомпозитов в водородной плазме содержит СВЧ-печь, установленный внутри печи кварцевый реактор для размещения в нем нанокомпозитов, состоящий из корпуса в виде полого цилиндра из кварцевого стекла и установленных на его торцах с использованием вакуумного уплотнения диэлектрических фланцев с хвостовиками для соединения с вакуумными шлангами, один из которых предназначен для подачи водорода и снабжен натекателем, а другой - для вакуумирования СВЧ-печи и реактора при помощи механического насоса. Каждый из фланцев выполнен составным и состоит из наружной оболочки, крышки, уплотнения и профилированной прокладки из кварцевого стекла с центральным отверстием. Наружная оболочка выполнена в виде полого двухступенчатого цилиндра с хвостовиком для вакуумного шланга и имеет наружную резьбу для установки на нее крышки и внутреннюю конусную поверхность для установки уплотнения в конический зазор между корпусом реактора и наружной оболочкой. Крышка размещена между торцом наружной оболочки и торцом корпуса реактора. Обеспечивается непрерывная обработка нанокомпозитов. 1 з.п. ф-лы, 2 ил.

Изобретение относится к наноэлектронике и наноэлектромеханике и может быть использовано в различных областях современной наноиндустрии, микроэлектронике, альтернативной энергетике и т.д. Износостойкое наноструктурное покрытие выполнено из нанокомпозиционного металл-керамического материала, полученного на ситалловой подложке ионно-лучевым распылением, и имеет структуру, состоящую из гранул металлической фазы со средним диаметром 2-4 нм, изолированных металлической фазой, при этом концентрация металлической фазы составляет 30-56 ат.%. Техническим результатом изобретения является создание наноструктурного металл-керамического покрытия, обладающего высокой износостойкостью и стабильностью параметров. 1 пр., 1 ил.

Изобретение относится к технологии нанесения наноструктурных покрытий и может быть использовано в наноэлектронике и наноэлектромеханике. Покрытие получают из композита металл-керамика состава (Co86Nb12Ta2)x(SiOn)100-x. Осуществляют осаждение композита ионно-лучевым распылением с обеспечением образования гранул металлической фазы со средним диаметром 2-4 нм, изолированных сплошной керамической фазой. Концентрацию металлической фазы при распылении выбирают в пределах 20 - 40 ат.%. Получаемые покрытия обладают высокой твердостью и характеризуются высокой стабильностью параметров. 1 з.п. ф-лы, 1 ил., 1 пр.

Изобретение относится к наноэлектронике и наноэлектромеханике и может быть использовано в различных областях современной наноиндустрии, микроэлектронике, альтернативной энергетике и т.д. Наноструктурное покрытие выполнено из нанокомпозиционного металл-керамического материала состава (CO86Nb12Ta2)x(SiOn)100-x, полученного на ситалловой подложке ионно-лучевым распылением и имеющего структуру, состоящую из гранул металлической фазы со средним диаметром 2-4 нм, изолированных сплошной керамической фазой, при этом концентрация металлической фазы составляет 20-40 ат.%. 1 з.п. ф-лы, 1 ил.

Изобретение относится к наноэлектронике и наноэлектромеханике и может быть использовано в различных областях современной наноиндустрии, микроэлектронике, альтернативной энергетике и т.д. В способе получения наноструктурного покрытия из гранулированного нанокомпозита «металл-керамика» получают нанокомпозит предпочтительно методом ионно-лучевого распыления с образованием гранул, со средним диаметром преимущественно 2-4 нм, а концентрацию металлической фазы в получаемом нанокомпозите при распылении обеспечивают в пределах 25-30 ат.%. Изобретение обеспечивает создание наноструктурного покрытия, обеспечивающего повышенную износостойкость, высокую стабильность параметров с одновременным снижением себестоимости. 2 ил.

Изобретение относится к наноэлектронике и наноэлектромеханике и может быть использовано в различных областях современной наноиндустрии, микроэлектроники, альтернативной энергетике и т.д. Способ повышения износостойкости наноструктурного покрытия из гранулированного композита «металл-керамика», преимущественно (CO40Fe40B20)x(CaF2)100-x, получаемого методом ионно-лучевого напыления на подложки и представляющего собой наноструктурный материал, состоящий из металлических гранул со средним диаметром преимущественно 2-6 нм, расположенных в объеме керамической матрицы, характеризуется тем, что концентрацию металлической фазы при напылении выбирают в пределах 20-60 ат.%, предпочтительно 30-56 ат.%. Изобретение обеспечивает повышенную износостойкость, высокую стабильность параметров с одновременным снижением себестоимости. 1 ил.

Изобретение относится к наноэлектронике и наноэлектромеханике и может быть использовано в различных областях современной наноиндустрии, микроэлектронике, альтернативной энергетике и т.д. Наноструктурное покрытие из наногранулированного композита «металл-керамика», преимущественно (CO40Fe40B20)x(CaF2)100-x, получено методом ионно-лучевого напыления на подложки и представляет собой наноструктурный материал, состоящий из металлических гранул со средним диаметром преимущественно 2-6 нм, расположенных в объеме керамической матрицы. Концентрация металлической фазы составляет 20-60 ат.%, предпочтительно 30-56 ат.%. Изобретение обеспечивает повышенную износостойкость, высокую стабильность параметров с одновременным снижением себестоимости защитного покрытия. 1 ил.

 


Наверх