Патенты автора Васильев Владислав Юрьевич (RU)

Изобретение относится к измерительной технике и может быть использовано для измерения давления жидкостей и газов. Фотоэлектрический сенсор давления содержит упругий элемент в виде основного профилированного кремниевого кристалла с опорной рамкой, измерительной квадратной диафрагмой с жестким центром и V-канавкой, проходящей по оси симметрии опорной рамки и жесткого центра через одну из сторон рамки, в которой расположено и клеевым способом закреплено оптоволокно, один принимающий излучение конец которого расположен за пределами упругого элемента, и интегральный фотодиод, при этом в фотоэлектрический сенсор давления согласно изобретению введены дополнительный кремниевый кристалл с двумя отверстиями, дополнительный интегральный фотодиод, две вспомогательные V-канавки, цилиндрические направляющие и U-канавка, над которой расположен другой свободный излучающий конец оптоволокна и которая проходит по оси симметрии опорной рамки, пересекая другую противоположную сторону рамки, и ширина которой больше размера фотодиода, оба фотодиода расположены на дополнительном кристалле один над другим, разделены узким промежутком и включены дифференциально, на диоды направлен излучающий конец оптоволокна, а сам дополнительный кристалл прикреплен к внешнему краю опорной рамки упругого элемента перпендикулярно плоскости измерительной квадратной диафрагмы, а точная оптическая центровка конструкции сенсора достигается с помощью отверстий на дополнительном кристалле, в которые входят цилиндрические направляющие, закрепленные во вспомогательных V-канавках, расположенных на опорной рамке упругого элемента по обе стороны от оптоволокна. Изобретение позволяет уменьшить нелинейность преобразовательной характеристики и начальный выходной сигнал. 3 ил.

Изобретение относится к области сенсорной электроники и может быть использовано для измерения параметров технологических сред, в медицине. Заявленный амплитудный волоконно-оптический сенсор давления содержит кремниевый мембранный упругий элемент с жестким центром, оптическое волокно, передающее излучение от внешнего источника и закрепленное на мембранном упругом элементе с возможностью перемещения только вместе с его жестким центром пропорционально измеряемому давлению, и один фотоприемник. При этом в заявленное устройство введены дополнительный фотоприемник, зеркало и две параллельные кремниевые пластины, расположенные перпендикулярно мембранному упругому элементу. Кроме того, оба фотоприемника включены по дифференциальной схеме и расположены на одной кремниевой пластине, а на другой пластине размещено зеркало, которое представляет собой плоскую отражающую поверхность кристаллографической ориентации типа (100) с углублениями пирамидальной формы, стенки углублений сходятся в одной точке, а кристаллографическая ориентация стенок типа (111). Технический результат - повышение чувствительности и снижение нелинейности преобразовательной характеристики. 1 ил.

Изобретение относится в области сенсорной электроники и может быть использовано для измерения параметров технологических сред, в медицине. Амплитудный волоконно-оптический сенсор давления содержит кремниевый мембранный упругий элемент с жестким центром, оптическое волокно, закрепленное на кремниевом мембранном упругом элементе с возможностью перемещения вместе с жестким центром кремниевого мембранного упругого элемента пропорционально измеряемому давлению, и фотоприемник, причем в него введен дополнительный фотоприемник, при этом оба фотоприемника включены по дифференциальной схеме и размещены на отдельной кремниевой пластине, закрепленной параллельно указанному кремниевому мембранному упругому элементу. Технический результат - создание сенсора, имеющего монотонную преобразовательную характеристику с уменьшенной нелинейностью преобразовательной характеристики. 1 ил.

Изобретение относится к микроэлектронике. В способе получения слоя диоксида кремния, включающем загрузку полупроводниковой подложки в реактор, нагрев полупроводниковой подложки до необходимой температуры в диапазоне 400-750°С, введение окислителя закиси азота и моносилана и поддержание давления в реакторе в диапазоне 0,3-20 мм рт. ст. до осаждения слоя диоксида кремния на полупроводниковой подложке до необходимой толщины, введение закиси азота и моносилана в реактор выполняется циклами, состоящими из последовательных импульсов закиси азота и моносилана, разделенными импульсами продувочного инертного газа, а количество циклов рассчитывают из необходимой толщины слоя и скорости осаждения слоя диоксида кремния за один цикл. Изобретение позволяет обеспечить равномерный рост плотных слоев диоксида кремния на подложках сложной формы, исключить взаимодействие исходных реагентов или их непрореагировавших остатков в реакторе и обеспечить локализацию процесса формирования слоя диоксида кремния на поверхности нагретой подложки. 6 ил., 1 табл.

Изобретение относится к технологии микроэлектроники. В способе получения слоя диоксида кремния, включающем загрузку полупроводниковой подложки в реактор, нагрев полупроводниковой подложки до необходимой температуры в диапазоне 300-500°C, подачу паров алкоксисилана, преимущественно - тетраэтоксисилана, и окислителя в виде смеси кислорода и озона, с концентрацией последнего в первом в диапазоне 0-16 вес.%, поддержание рабочего давления в реакторе в диапазоне 0,5-760 мм рт.ст., процесс осаждения осуществляют циклами, состоящими из последовательных импульсов паров алкоксисилана и окислителя, разделенными импульсами продувочного инертного газа, причем длительность импульсов составляет 0,1-20 секунд, а количество циклов рассчитывают из необходимой толщины слоя и скорости осаждения слоя диоксида кремния за один цикл. Изобретение позволяет обеспечить равномерный рост слоев диоксида кремния в условиях реализации процесса, исключающего взаимодействие исходных реагентов или их непрореагировавших остатков в реакторе, и обеспечивает взаимодействие реагентов на нагретой поверхности подложки в адсорбционном слое. 7 ил., 1 табл.

Изобретение относится к измерительной технике и может быть использовано для измерения давления жидкости и газов. Резонансный сенсор давления содержит измерительную мембрану с возбуждающим электродом и резонансной полостью, к краям которой с двух сторон жестко закреплен резонансный элемент в форме балки с прямоугольным сечением, в теле которого сформированы тензорезисторы, при этом размер сечения балки в ортогональном направлении к плоскости колебаний постоянен, а в направлении колебаний возрастает по линейному закону, достигая максимального значения по середине балки, причем отношение максимального размера сечения к минимальному в указанном направлении лежит в интервале от 1 до 6. Техническим эффектом является уменьшение нелинейности преобразовательной характеристики резонансного сенсора давления. 4 ил.

 


Наверх