Патенты автора Кузин Александр Геннадьевич (RU)

Изобретение относится к датчикам и устройствам для определения ионизирующих излучений и/или ионизирующих частиц. Дозиметр, содержащий чувствительный элемент, выполненный в виде бипластины из материалов с разными коэффициентами радиационного изменения модуля упругости, устройство измерения деформации изгиба, устройство восстановления формы, согласно изобретению устройство измерения деформации изгиба выполнено в виде емкостного датчика, соединенного с измерителем емкости, при этом емкостный датчик представляет собой конденсатор переменной емкости, одна из пластин которого закреплена на торце чувствительного элемента нормально к его поверхности, пластины конденсатора переменной емкости выполнены в виде кругов одинаковой площади, измеритель емкости выполнен с блоком обработки и фиксирования дозы, предварительно откалиброванным на измерение различных типов излучения отдельно или совместно согласно заданным типам излучения, устройство восстановления формы выполнено в виде источника тока, подключенного к двум клеммам одного из токопроводящих материалов бипластины. Изобретение обеспечивает измерение величины ионизирующей дозы облучения в виде сигнала электрической емкости и ее фиксацию. 3 з.п. ф-лы, 1 ил.

Изобретение относится к комплексным приборам одновременного измерения различных характеристик заданного типа излучения, в частности к приборам одновременного измерения заряда и энергии принимаемого излучения. Технический результат - возможность определения полного заряда одновременно с полной энергией за заданный интервал времени для корпускулярного типа излучения. Система микрокалориметра и цилиндра Фарадея с комплексным приемником излучения содержит приемник излучения, блок термопар, блок калориметрических измерений, блок зарядовых измерений. Приемник излучения выполнен в виде двух элементов, каждый из которых подключен последовательно через конденсаторный блок на заземляющий электрод, а блок зарядовых измерений выполнен в виде двух гальванометров так, что параллельно каждому конденсаторному блоку подключен гальванометр, при этом контактные провода к каждому из конденсаторных блоков подаются через вакуумированный разъем. Блок термопар выполнен в первом вакуумированном корпусе так, что термопары состоят в теплопроводном контакте с внутренней поверхностью второго элемента приемника излучения, при этом контактные провода с термопар подаются на измерительный блок калориметрических измерений через вакуумированный разъем. Внешняя поверхность второго элемента приемника излучения выполнена во втором вакуумированном корпусе, к отверстию которого прикреплен стыковочный элемент, прозрачный для измеряемого излучения, который представляет собой трубчатый элемент для вакуумированного соединения с источником излучения, а первый элемент приемника излучения, выполненный в виде диафрагмы, расположен между стыковочным элементом, прозрачным для измеряемого излучения, и вторым элементом приемника излучения. 1 з.п. ф-лы, 1 ил., 1 табл.

Изобретение относится к использованию ударных волн для проведения химических реакций или для модификации кристаллической структуры веществ, в частности к способу формирования пустот в ионных кристаллах KBr. Способ заключается в том, что на поверхность пластины кристалла KBr особой чистоты кладут навеску из Mg особой чистоты и помещают пластину в кварцевую трубку, откачивают до давления 10-2÷10-3 Па, нагревают до температуры T1=450÷520°С, затем производят отжиг в течение времени τ1=5÷15 часов, после чего проводят охлаждение до температуры Т2=20÷22°С и выдержку в течение τ2=2÷3 часов, затем в области диффузии Mg в данных пластинах генерируют импульсы растягивающих напряжений амплитудой не менее 50 МПа. Технический результат - формирование распределения пустот на заданном интервале глубин образца. 1 ил., 3 пр.

Изобретение относится к области дозиметрии и спектрометрии импульсных ионизирующих излучений ускорителей, в частности импульсного электронного и тормозного излучений. Фольговый зарядовый спектрограф содержит пакет из N металлических фольг, общая толщина которых подбирается из условия равенства экстраполированному пробегу электронов d максимальной энергии электронов Ε<511 кэВ, при этом фольги расположены параллельно друг другу в вакуумной камере при значении давления Ρ=10-6÷10-7 Па, каждая фольга подсоединена к отдельной емкости, накапливающей поглощенный данной фольгой заряд, имеющей отдельный разъем для снятия зарядовых характеристик, и полностью покрыта диэлектрической пленкой толщиной не более 2 мкм. Технический результат - упрощение способа измерения распределения электронов по энергиям, повышение точности измерений. 2 ил.

Использование: для формирования в сверхпроводящих тонких пленках областей с требуемыми значениями плотности критического тока. Сущность изобретения заключается в том, что способ формирования областей переменной толщины сверхпроводящей тонкой пленки методом лазерного распыления мишени YBa2Cu3O7-x, в котором между мишенью и подложкой располагают затеняющую пластину, затем воздействуют на мишень лазерным излучением плотностью мощности Ρ=(1÷2)·109 Вт/см2, длиной волны λ=1,06 мкм, длительностью импульса τ=10÷20 нс и частотой следования импульсов ν=10 Гц в течение времени t=175÷185 с, при температуре мишени Тм=600÷700°С, температуре подложки Тп=800÷840°С, расстоянии между подложкой и затеняющей пластиной L=0,1÷0,2 мм, при этом вне затеняющей пластины формируется сверхпроводящая пленка толщиной D2=160÷200 нм с плотностью критического тока j>106 А/см2, а под затеняющей пластиной формируется сверхпроводящая пленка толщиной D2=40-50 нм с плотностью критического тока j=(1÷5)·103 А/см2. Технический результат: обеспечение возможности упрощения технологии создания микромостиков сверхпроводящей пленки с требуемыми значениями критического тока. 3 пр., 4 ил.

Изобретение относиться к способам формирования самоохлаждаемых автономных приборов и элементов электроники, которые могут эффективно работать без использования технологии жидкого азота, и другой криогенной техники. Способ формирования самоохлаждаемого автономного наноприбора заключается в том, что на подложке из монокристаллического материала с сформированным с одной стороны СКВИД-приемником на обратной стороне размещают устройство для поглощения тепла, которое содержит катод и анод, имеющие различную энергию Ферми электронов. Затем подложку через отверстие для монтажа заключают в вакуумную оболочку из ситалла, содержащую контактные электроды для двух сторон подложки. После этого отверстие для монтажа подложки закрывают крышкой из ситалла. Размещают данное устройство в вакуумной камере, в которой располагают также мишень из ситалла. Откачивают до давления 10-1 Па, нагревают мишень и крышку из ситалла до температуры 450÷500°С. Затем лазером с длиной волны излучения 1,06 мкм, длительностью импульса 10-20 нс и частотой повторения импульсов 10 Гц, плотностью мощности 5·108÷8·108 Вт/см2 распыляют мишень из ситалла, находящуюся на расстоянии 8÷10 мм от крышки из ситалла в течение 10 минут. Изобретение обеспечивает создание такой конструкции СКВИДа (сверхпроводящего квантового интерференционного датчика), в которой исключены: деградация сверхпроводящих свойств в воздушной среде, зависимость достижения рабочей температуры от использования жидкого азота или других внешних криогенных установок с большими габаритами. 1 ил.

Изобретение относится к приборам с использованием сверхпроводимости, в частности к приборам с переходом между различными материалами с использованием эффекта Джозефсона. Указанный результат достигается тем, что предложен способ формирования тонкопленочных микромостиков, в котором наносят сверхпроводящий материал на подложку через маску, при этом в качестве маски используют пластины из тугоплавких материалов заданной геометрии, между остриями пластин при начальной фиксированной температуре T1 формируют величину первичного фиксированного зазора d1 и его геометрию, рассчитывают величину вторичного зазора, получаемой ширины микромостика d2 в зависимости от конечной фиксированной температуры T2 по формуле d2=d1-{α1L1(T2-T1)+α2L2(T2-T1)}-α3{(L1+L2+d1)(T2-T1)}, где: L1 - расстояние от линии фиксации первой пластины до зазора, L2 - расстояние от линии фиксации второй пластины до зазора, T1 - начальная фиксированная температура, T2 - конечная фиксированная температура, α1 - температурный коэффициент теплового расширения первой тугоплавкой пластины, α2 - температурный коэффициент теплового расширения второй тугоплавкой пластины, α3 - температурный коэффициент теплового расширения подложки, затем производят: нагрев, напыление или лазерную абляцию сверхпроводящего материала фиксированной длительности t и фиксированной энергии E, определяющих конечную фиксированную температуру T2. 1 з.п. ф-лы, 6 ил., 1 табл.

Изобретение относится к измерительной технике и может быть использовано для нагрева и измерения температуры образцов, прозрачных в инфракрасной области излучения (ИК). Предложен способ определения температуры образцов, прозрачных в ИК-области, подвергаемых воздействию потоками заряженных частиц или электромагнитного излучения, включающий нагрев или охлаждение образцов, измерение температуры образцов с помощью термопар. Образцы помещают в замкнутый корпус, выполненный из материала с высокой теплопроводностью, расположенный в вакуумной камере, откачивают воздух до давления 10-3-10-5 Па, нагревают или охлаждают корпус на заданный интервал температуры. Производят непрерывные предварительные измерения температуры термопарами, расположенными снаружи и внутри корпуса вместе с исследуемыми образцами, до момента стабилизации температуры. Затем производят конечные измерения температуры данными термопарами в момент стабилизации температуры, которая совпадает с температурой исследуемого образца до внешнего воздействия потоками заряженных частиц или электромагнитного излучения. Производят внешнее воздействие, после внешнего воздействия полностью повторяют процедуру измерения температуры образцов. Технический результат - повышение точности определения температуры образцов, прозрачных в ИК-области. 1 ил.

Изобретение относится к технологии нанесения тонких пленок, а именно к испарителям, и может быть использовано для напыления пленок из драгоценных металлов и сплавов. Технический результат - повышение гравитационной стабильности расплава, уменьшение разбрызгивания, увеличение эффективной поверхности смачивания, улучшение диаграммы направленности и уменьшение неконтролируемого угла разлета напыляемых материалов. Испаритель выполнен из углеродного материала с выемкой для размещения напыляемого материала в виде канавки, расположенной нормально вектору напряженности гравитационного поля и имеющей в поперечном сечении вид трапеции. Нижнее по отношению к гравитационному полю основание трапеции меньше верхнего. При этом в канавке размещена вставка в виде объемного элемента из W или Мо или Та. 1 з.п. ф-лы, 2 ил.

 


Наверх