Патенты автора Уткин Алексей Владимирович (RU)

Изобретение относится к порошковой металлургии, в частности к изготовлению композиционной керамики карбид бора - диборид хрома, и может быть использовано для изготовления чехлов высокотемпературных термопар, испарителей и лодочек для вакуумной металлизации, труб для перекачивания расплавленных металлов, сопел пескоструйных аппаратов, легковесной керамической брони, антифрикционных изделий. Способ приготовления шихты для композиционной керамики карбид бора – диборид хрома характеризуется тем, что исходные компоненты: оксид хрома, карбид бора и нановолокнистый углерод смешивают при следующем соотношении в молях: оксид хрома 1,13; карбид бора 8,88; нановолокнистый углерод 2,25, просеивают через сито 100 мкм и загружают в продуваемый аргоном кварцевый реактор, который размещают в индукционной печи, при этом процесс осуществляют в течение 10–15 минут при температуре 1600-1700 °С. Предложенный способ направлен на ускорение технологического процесса получения шихты карбид бора - диборид хрома с равномерным распределением частиц для получения керамики с повышенной относительной плотностью и трещиностойкостью. 4 пр.

Изобретение относится к способу изготовления углеграфитовых изделий. Осуществляют приготовление смеси на основе углеродосодержащего наполнителя, размещение смеси в виде слоя в области формования изделия и проведение ее облучения лазерным излучением в атмосфере инертного газа. Приготовление смеси осуществляют путем введения в углеродосодержащий наполнитель связующего и размещают полученную смесь в области формования изделия в виде последовательно накладываемых слоев толщиной 0,15-0,5 мм, каждый из которых облучают лазерным излучением с нагревом до температуры от 1000°C до 1800°C с постоянным обдувом инертным газом. Перед накладкой очередного слоя предыдущий слой охлаждают до 90-100°C, а в качестве связующего используют или высокомолекулярное органическое связующее, или ароматические смолы. В частных случаях осуществления изобретения в качестве углеродосодержащего наполнителя используют порошок кокса или графита фракцией от 20 до 150 мкм. В качестве связующего используют высокомолекулярное органическое связующее, или ароматические смолы С8-С10, или комбинированные смолы С7-С11. Слои смеси облучают лазерным излучением с длиной волны 1070 нм, мощностью излучения 340 Вт, со скоростью перемещения пучка 4-5 мм/с и диаметре пучка излучения 6-7 мм. В качестве источника лазерного излучения используют твердотельный лазер, или Ti:Sa лазер, или Yb:YAG лазер, или Nd:YVO лазер, или Nd:YLF лазер, или Nd:YAG лазер с длиной волны 0,5-3 мкм, мощностью 50-500 Вт с однородной плотностью излучения в пучке. Обеспечивается повышение качества изделий из графитов, углерод-углеродных и карбидокремниевых композитов и получение изделия с высокой плотностью, однородностью и повышенной трещиностойкостью, а также сокращается время изготовления изделий и обеспечивается вариативность изготовления изделий с различными характеристиками. 4 з.п. ф-лы, 2 ил., 3 пр.

Изобретение относится к способам получения порошковых материалов на основе германатов тугоплавких металлов, а именно циркония и гафния, которые могут быть использованы в качестве компонентов термостойких керамических изделий и люминофоров. Исходные диоксид германия и диоксид циркония или гафния смешивают в стехиометрическом соотношении и подвергают механохимической активации в шаровой планетарной мельнице, футерованной диоксидом циркония, мелющими шарами из диоксида циркония с ускорением мелющих шаров 30g при загрузке мелющих шаров не менее 6 г/г обрабатываемых диоксидов, в течение 30-60 мин, а прокаливание проводят при температуре 1200°С в течение не менее 6 часов. Изобретение обеспечивает повышение выхода получаемых оксидов за счет устранения потерь диоксида германия из-за его высокой летучести при температуре выше 1200°С, а также получение германатов тугоплавких металлов в точном соответствии со стехиометрией, что способствует сохранению люминесцентных свойств получаемых оксидов. 2 ил., 1 табл., 8 пр.

Изобретение относится к термостойким системам теплозащиты поверхности гиперзвуковых летательных и возвращаемых космических аппаратов. Термостойкая система теплозащиты состоит из теплоизоляционного и теплозащитного слоя, включающего композиты с керамической матрицей, армированной теплостойкими волокнами и содержащей сублимирующее твердое вещество. Сублимирующее твердое вещество включает стабилизированные предкерамические кремнийорганические полимеры, содержащие атомы С, Si и Н, а также гетероатомы германия. В качестве керамической матрицы теплозащитный слой содержит карбиды, или бориды тугоплавких металлов, или их смеси. Также сублимирующее твердое вещество может включать германаты тугоплавких металлов. Достигается более эффективная теплозащитная система. 2 н. и 8 з.п. ф-лы, 5 пр.

 


Наверх