Патенты автора Молоканов Артемий Владимирович (RU)

Изобретение может быть использовано для получения ультрамелкозернистых сверхпластичных листов титано-алюминиевых сплавов при изготовлении сложных деталей методом сверхпластической формовки и диффузионной сварки. Листы готового проката титано-алюминиевого сплава, например, Ti-48Al-2Cr-2Nb толщиной 2,0 мм, предварительно обрабатывают на воздухе лазерным излучением и подвергают горячему обжатию при давлении 150 МПа и температуре 1250°C в течение 2 часов. Таким образом, первоначальный крупномодульный слоистый микроструктурный сплав превращается в мелкомодульный дуплексный, который обладает сверхпластичностью и способен соединяться на межатомном уровне, т.е. диффузионной сваркой. Диффузионную сварку осуществляют в вакуумной печи при температуре 1100°C, давлении газа 10 МПа и скорости деформации 8·10-5 c-1. Способ обеспечивает повышение прочностных характеристик диффузионного сварного соединения деталей из титано-алюминиевых сплавов.

Изобретение может быть использовано при изготовлении сваркой давлением с подогревом многослойных панелей из титановых сплавов, в частности, для аэрокосмического машиностроения. Предварительно листы заполнителя соединяют лазерной сваркой. Затем электроконтактной сваркой по пересекающимся зонам локально соединяют листы заполнителя. Далее поочередно производят сверхпластическую формовку и диффузионную сварку при температуре 900°С аргоном под давлением 0,12 МПа внутренних и внешних слоев наполнителей и обшивок. Для предотвращения сварки листов осуществляют продувку аргоном под давлением 0,4 МПа. Способ обеспечивает повышение прочностных характеристик многослойных сотовых изделий из титанового сплава ОТ4-1. 2 ил.

Изобретение относится к области машиностроения и может быть использовано в качестве опор скольжения в узлах крепления, способных сохранять свою работоспособность в широком диапазоне нагрузок как в воздушной среде, так и в глубоком вакууме. Шаровая опора содержит корпус, выполненный их двух крышек (1, 2), жестко соединенных между собой, с заключенным в корпус шаровым пальцем (3) со сферической головкой, размещенной во вкладыше (4). Шаровой палец (3) выполнен из материала ВЖЛ-16, а на его поверхности сформировано многослойное композиционное покрытие (7) со сдвиговым сопротивлением, меньшим сдвигового сопротивления шаровой опоры, при этом первый слой подложки методом гальванического покрытия выполнен из тантала, второй слой из серебра нанесен электролитическим способом, а третий - твердосмазочное покрытие ВАП. Технический результат: повышение износостойкости шаровой опоры, обеспечение положительного градиента напряжения, а также способность к восстановлению повреждений антифрикционного слоя. 2 ил

Изобретение относится к области машиностроения и может быть использовано в шаровых шарнирах рулевых механизмов различных транспортных средств. Шаровая опора содержит корпус, выполненный из двух частей в виде крышек, неразъемно соединенных между собой, с заключенным в корпус шаровым пальцем, сферической головкой, размещенной во вкладыше. Пространство между вкладышем и корпусом заполнено термопластичным наполнителем и далее ускоренным потоком ионизированных атомов с энергией 100…200 КэВ воздействуют на шаровой палец. Высокие скорости нагрева приводят к образованию на сферической поверхности метастабильной фазы - металлического стекла, а металлические стекла обладают высокой коррозионной стойкостью и износостойкостью. Технический результат: повышение поверхностной плотности шарового пальца и повышение износостойкости шаровой опоры в целом. 1 ил.

Изобретение относится к области машиностроения и может быть использовано в качестве опор скольжения в узлах трения, способных сохранять свою работоспособность в широком диапазоне нагрузок и температур как в воздушной среде, так и в глубоком вакууме. Шаровая опора содержит корпус, выполненный из двух частей, неразъемно соединенных между собой, с заключенным в корпус шаровым пальцем со сферической головкой, размещенной во вкладыше из антифрикционного материала. Пространство между вкладышем и корпусом заполнено термопластическим наполнителем. На сферическую головку пальца методом электроискрового напыления нанесен карбид вольфрама с последующим нанесением слоя серебра методом электролитического осаждения, при этом вкладыш выполнен из молибденита. Технический результат: повышение износостойкости и работоспособности шаровой опоры за счет увеличения максимальных значений давления и более равномерного распределения контактных давлений за счет изменения структуры материалов шарового пальца и вкладыша. 1 ил.

Изобретение относится к области машиностроения и может быть использовано в шаровых шарнирах рулевых механизмов различных транспортных средств. Шаровая опора содержит корпус, выполненный из двух частей в виде крышек, неразъемно соединенных между собой, с заключенными в корпус шаровым пальцем, сферической головкой, размещенной во вкладыше из антифрикционного материала. Пространство между вкладышем и корпусом заполнено термопластичным наполнителем. На сферическую головку пальца методом детонационного напыления нанесено покрытие порошкового сплава на основе карбида вольфрама и кобальта. Вкладыш выполнен из твердосмазочного материала на основе неорганического вещества дисульфида молибдена. Технический результат: повышение износостойкости шаровой опоры со сферическим подшипником скольжения в расширенных диапазонах рабочих температур за счет изменения структуры материалов шарового пальца и вкладыша. 1 ил.
Изобретение может быть использовано для оптимизации технологического процесса сверхпластической формовки при изготовлении ответственных силовых деталей, в частности шпангоутов, силовых нервюр, балок шассийных и т.д. Осуществляют горячую газовую формовку заготовок из титанового сплава ВТ22 с использованием сверхпластической деформации при температуре от 870 до 960°С и скорости деформации 10-3 с-1. Готовые детали дополнительно подвергают термической обработке в (α+β)-области при температуре от 860 до 880°С. Способ обеспечивает улучшение прочностных свойств изделий из титанового сплава ВТ22, в частности трещиностойкости.
Изобретение может быть использовано при изготовлении сверхпластической формовки изделий сложной формы, в частности лопаток компрессора. Изготавливают лопатки компрессора из высокопрочного титанового сплава ВТ6 на основе эвтектоидной системы легирования. Производят горячую деформацию газовой формовкой с использованием эффекта сверхпластичности при температуре от 870°C до 1000°C и скорости деформации 10-4 с-1. Проводят термическую обработку готовых лопаток компрессора при температуре от 870 до 950°C с продолжительностью выдержки при гомогенизации и старении от 450 до 600°C. Изобретение обеспечивает оптимизацию технологического процесса при улучшении механических свойств лопаток, а именно прочности, жаропрочности, вязкости разрушения.

Изобретение может быть использовано в аэрокосмическом машиностроении для изготовления многослойных панелей из титанового сплава ВТ-23. После предварительного отжига листов заполнителя при температуре 680°C с последующей выдержкой на воздухе в течение 25 минут осуществляют сборку в пакет упомянутых листовых заготовок. Соединяют листы локально между собой электроконтактной сваркой рядом непрерывных ортогональных швов и герметизируют пакет по периметру. Располагают пакет между листами обшивок, его нагревают до температуры 875°C и производят формовку и сварку заполнителя с обшивкой путем подачи газа под давлением. Предварительный отжиг листов с соблюдением указанных режимов увеличивает значение показателя скоростной чувствительности напряжения, что позволяет повысить прочностные характеристики готовых изделий из титанового сплава. 2 ил.

Изобретение может быть использовано для получения металлических панелей из титановых сплавов. Изготавливают заготовки заполнителя из двух листов титанового сплава ВТ6 толщиной 1 мм с продольной формой прокатки. Пакет листовых заготовок обваривают по контуру и проваривают рядом непрерывных ортогональных швов. Собранный пакет размещают между листами обшивок и нагревают в печи до температуры 800°C. Осуществляют формообразование заполнителя путем подачи в него газа под давлением. Скорость деформации ξ заполнителя при формовании выбирают из условия 5·10-4с-1<ξ<1·10-2с-1. Способ обеспечивает повышение прочностных характеристик готовых изделий за счет увеличения сверхпластичности и существенного снижения газонасыщенного поверхностного слоя. 1 ил.

Изобретение может быть использовано для изготовления сваркой давлением с подогревом многослойных металлических панелей корпусов летательных аппаратов. Локально соединяют листы заполнителя и собирают пакет в штампе с размещением их между листами обшивок. Нагревают пакет до температуры сварки. При нагреве осуществляют диффузионную водородную обработку титанового сплава за счет размещения в крышке печи рефлектора-отражателя из титанового сплава, имеющего большее атомарное процентное содержание водорода по отношению к титановому сплаву листов заполнителя. Проводят формование ячеек заполнителя за счет подачи газа под давлением между листами заполнителя и диффузионную сварку ячеек между собой и с листами обшивок. За счет диффузионного напыления происходит дополнительное легирование титанового сплава водородом, что приводит к изменению микроструктуры сплава. Способ обеспечивает повышение прочностных характеристик готовых панелей. 3 ил.

Изобретение может быть использовано для изготовления многослойных металлических панелей, например, в аэрокосмическом машиностроении. Предварительно листы заполнителя локально соединяют между собой по пересекающимся зонам. Сваренные листы заполнителя размещают в штампе между листами обшивок и нагревают. Производят формование ячеек заполнителя путем подачи газа под давлением между листами заполнителя с осуществлением диффузионной сварки ячеек между собой и с листами обшивок. Одновременно с этим в полость штампа подают аргон с температурой 400-600°C для осуществления пластической деформации титанового сплава при температуре ниже 700°C, что связано с изменением диффузионной подвижности легирующих элементов замещения и их перераспределением в твердых α- и β-растворах титана. Способ обеспечивает повышение прочностных характеристик металлических панелей и уменьшение нестабильности геометрических размеров. 2 ил.

Изобретение может быть использовано при изготовлении многослойных панелей методом, предусматривающим совмещение процесса сверхпластичной формовки и диффузионной сварки, например, в аэрокосмической промышленности. Изготавливают листовые заготовки заполнителя. На заданные участки одного из листов наносят диффузионным напылением в виде сетки вещество, состоящее из оксида молибдена и нитрида бора, электрическое сопротивление которого превышает электрическое сопротивление материала заготовок. Осуществляют сборку листовых заготовок заполнителя в пакет, герметизацию его по периметру и выполнение роликовой сваркой ряда непрерывных швов с образованием непроваров на участках их пересечения с нанесенным веществом. Размещают пакет между листами обшивок, нагревают его и проводят формовку заполнителя и сварку его с обшивкой за счет давления газа, проходящего через непроваренные участки пакета заполнителя. Способ обеспечивает повышение качества панелей и их упрочнение за счет диффузии атомов молибдена на поверхности титанового сплава.1 ил.

Изобретение относится к области измерительной техники, а именно к системам измерения усилий в стержнях, тягах и других протяженных элементах конструкций, и может быть использовано в любой отрасли народного хозяйства, и, в частности, в ракетной технике. Устройство работает следующим образом. В двуплечих рычагах делаются отверстия таким образом, чтобы центры отверстий и оси вращения лежали в одной плоскости. Аналогично выполняются ответные отверстия в основании. Систему тяг в «расслабленном» состоянии устанавливают на основание. В совмещенные отверстия на двуплечих рычагах вставляют технологические штыри. После чего одну из тяг при помощи талрепа натягивают до необходимого состояния. Натяжение одной тяги приводит к перекосу системы и зажатию одного из технологических штырей в отверстии. Далее при помощи талрепа начинаем натягивать вторую тягу до полного освобождения штыря от зажима («перекоса»), образовавшегося при натяжении первой тяги. Освобождение другого технологического штыря из отверстия будет свидетельствовать о том, что отверстия в двуплечих рычагах полностью совместились. Далее, на полностью собранную тягу устанавливают предварительно оттарированный съемный элемент с закрепленными на нем тензодатчиками, предварительно закрепляя его с помощью зажимов. Вращая талреп, поднатягивают тягу до момента появления сигналов с тензодатчиков, выбирают провис тяги. После чего полностью ослабляют зажимы и вновь закрепляют съемный элемент уже с усилием, предотвращающим проскальзывание поджатых друг к другу тяги и съемного элемента. С этого момента съемный элемент и тяга работают на растяжение совместно как единый элемент тяги. Таким образом, изменяя площадь поперечного сечения съемного элемента, не меняя при этом геометрических размеров самой тяги, можно изменить степень деформации и измеряемое усилие, а также равномерно распределить управляющий момент на тяге, и тем самым максимально совместить диапазон измерений с рабочим диапазоном используемых тензодатчиков, что автоматически повышает точность измерения и снижает трудоемкость изготовления и контроля. 6 ил.

Изобретение относится к области измерительной техники, а именно к системам измерения усилий в стержнях, тягах и других протяженных элементах конструкций, нагруженных осевой силой. Способ заключается в следующем. Спаренные тяги фиксируют относительно основания технологическими штырями, после чего натягивают одну тягу с контролем усилия, затем без контроля усилия вторую тягу до полного освобождения технологических штырей от зажима. Для обеспечения равномерной передачи управляющего момента необходимо, чтобы оси, проходящие через оси вращения и тяги рычагов, были перпендикулярны плоскости симметрии системы. Технический результат заключается в обеспечении заданного усилия натяжения тяг. 4 ил.

Изобретение может быть использовано для изготовления многослойных металлических панелей в авиакосмическом машиностроении. Осуществляют сборку пакета путем локального соединения листов заполнителя и размещения их между обшивками. Формируют ячейки заполнителя за счет подачи газа под давлением между листами заполнителя и производят диффузионную сварку ячеек между собой и с листами обшивок. В процессе формирования ячеек и сварки инертный газ подают с временной задержкой в течение 30 с при достижении необходимого уровня давления продувки внутренней полости между обшивками и листами заполнителя в процессе нагрева. При достижении необходимого уровня давления между листами заполнителя для предотвращения сварки между ними осуществляют временную задержку подачи газа в течение 30 с. По достижении температуры формирования ячеек заполнителя и сварки осуществляют временную задержку подачи инертного газа в течение 60 с при достижении заданного уровня давления. Способ обеспечивает повышение качества многослойных панелей. 3 ил.

 


Наверх