Патенты автора Марков Александр Вадимович (RU)

Устройство для моделирования содержит плоский прозрачный контейнер с узкой внутренней полостью, образованной двумя параллельными стенками контейнера, герметично соединенными с боковыми стенками, частично заполненной испытуемой жидкостью, поворотное основание для установки контейнера и механизм разворота основания относительно горизонтальной плоскости. Стенки контейнера выполнены подобными контурам оболочки топливного бака в местах ее сечения двумя параллельными плоскостями, между которыми расположен фрагмент капиллярного заборного устройства, содержащего сетчатый фазоразделительный фильтр и радиальные ребра. Подобный фрагмент, включающий сегмент сетчатого фазоразделительного фильтра и радиальное ребро, введен в состав устройства для моделирования и установлен между стенками контейнера с зазором между стенками контейнера и радиальным ребром. Боковые стенки контейнера выполнены из материала, смачиваемого испытуемой жидкостью, а параллельные стенки контейнера выполнены из материала, не смачиваемого испытуемой жидкостью, причем контейнер снабжен штуцерами для подачи и отвода газа и жидкости из контейнера. Обеспечивается возможность длительных наблюдений за гидростатическими и гидродинамическими процессами в контейнерах, заполненных испытуемой жидкостью, при моделировании условий невесомости в наземных условиях. 2 з.п. ф-лы, 12 ил.

Изобретение относится к системам подачи топлива в космических аппаратах (КА) в условиях невесомости. Устройство отбора топлива из баков КА в условиях невесомости для жидкостной реактивной двигательной установки содержит баки компонентов топлива в форме тела вращения и расположенную на оси в каждом баке возле одной из его стенок локальную систему отбора жидких компонентов топлива с капиллярным заборным устройством емкостного типа. На выходе капиллярного заборного устройства установлен датчик сплошности компонента топлива, соединенный с системой управления. Внутри бака установлен шнек с возможностью вращения вокруг оси бака. За счет своего вращения шнек сообщает остаткам компонентов топлива, находящимся вне капиллярного заборного устройства, механический импульс по направлению к капиллярному заборному устройству и обеспечивает заполнение его топливом еще до момента времени запуска ДУ. Техническим результатом изобретения является увеличение надежности устройства отбора топлива. 2 з.п. ф-лы, 1 ил.

Изобретение относится к космической технике, а именно к системам подачи топлива в космических аппаратах (КА). Устройство отбора топлива из баков КА в условиях невесомости для жидкостной реактивной двигательной установки содержит баки компонентов топлива и расположенную на оси в каждом баке возле одной из его стенок локальную систему отбора жидких компонентов топлива с капиллярным заборным устройством емкостного типа. Внутри каждого бака установлена перегородка с возможностью возвратно-поступательного перемещения вдоль оси бака. Перегородка прилегает с зазором к внутренним стенкам бака. Со стороны, обращенной к капиллярному заборному устройству (КЗУ), перегородка имеет углубление. Перегородка, перемещаясь с ускорением в сторону КЗУ, собирает в своем углублении остатки топлива в баке. Для предупреждения расплескивания топлива в углублении перегородки закреплен накопитель емкостного типа из капиллярно-сетчатого материала. Техническим результатом изобретения является увеличение надежности работы устройства отбора топлива из баков. 2 з.п. ф-лы, 1 ил.

Способ измерения линейных перемещений объекта основан на том, что лучи двух лазерных дальномеров направляют параллельно на плоскую поверхность, находящуюся на объекте измерений. Линейное перемещение объекта определяют на основании определенных двумя указанными дальномерами расстояний с учётом угла между линией ожидаемого перемещения объекта и плоской поверхностью, а также с учётом расстояния между линиями визирования дальномеров. Технический результат заявленного решения заключается в повышении точности измерения. 1 з.п. ф-лы, 2 ил.

Изобретение относится к методам снижения угрозы для Земли от опасных космических объектов (ОКО): астероидов, комет и т.п. Способ включает посылку к ОКО космического аппарата с оборудованием для разрушения ОКО и посадку на ОКО. Определяют плотность ОКО, а затем производят последовательное отделение от ОКО частей контролируемых размеров. Последние выбирают так, чтобы масса каждой из частей была наименее опасной для Земли. Полное разделение ОКО на части заканчивают незадолго до сближения ОКО с Землей на расстояние предела Роша (для «жидкого спутника»). Отделённые части перемещают для обеспечения доступа к остальной массе ОКО. Положение частей друг относительно друга ограничивают так, чтобы не происходило их соединение между собой, но было возможным их удаление друг от друга под действием градиента поля тяготения Земли. 3 з.п. ф-лы, 3 ил.

Изобретение относится к космонавтике и может быть использовано в будущем для перемещения населения Земли в более удаленное от Солнца место. Увеличение среднего радиуса орбиты Земли производят путем организации последовательности гравитационных маневров у Луны крупных объектов из пояса астероидов или пояса Койпера. В результате к Луне, а значит и ко всей системе Земля - Луна прикладываются гравитационные импульсы, изменяющие орбиту Земли вокруг Солнца. Эпоху гравитационного взаимодействия выбирают так, чтобы в это время центр масс Луны находился вблизи направления скорости центра масс системы Земля - Луна. Прочие параметры маневра, в частности прицельное расстояние и скорость входа объекта в сферу действия Луны, выбирают так, чтобы вектор гравитационного импульса, приложенный к Луне, был коллинеарен вектору скорости движения центра масс системы Земля - Луна вокруг Солнца. Проведение гравитационных облетов Луны поочередно спереди и сзади от Земли (по ходу ее движения) позволит сохранить в среднем орбиту Луны вокруг Земли. Техническим результатом изобретения является повышение безопасности для Земли операций по увеличению ее орбиты вокруг Солнца. 1 з.п. ф-лы, 1 ил.

 


Наверх