Патенты автора Каленский Сергей Мирославович (RU)

Изобретение относится к способу полетной диагностики узлов турбореактивного двухконтурного двигателя (ТРДД) со смешением потоков. Для диагностики узлов измеряют определенным образом рабочие параметры двигателя на стационарном полетном режиме работы двигателя, измеряют параметры окружающей среды, вычисляют расход воздуха на входе, определяют величины тяги двигателя, вычисляют величины относительного отклонения тяги двигателя от эталонного значения на пяти выбранных стационарных полетных режимах, рассчитывают величины относительного снижения коэффициентов полезного действия компрессоров и турбин, а также коэффициента полноты сгорания топлива в камере сгорания, оценивают техническое состояние компрессоров, турбин и камеры сгорания, формируют предупредительный сигнал в случае недопустимого технического состояния хотя бы одного из узлов. Обеспечивается повышение достоверности полетного диагностирования технического состояния ТРДД. 1 ил.

Авиационная силовая установка содержит турбореактивный двухконтурный двигатель с внешним и внутренним контурами и по меньшей мере один выносной вентиляторный модуль. Выносной вентиляторный модуль имеет корпус с установленными в нем тяговым вентилятором, приводом вентилятора, размещенными на одном валу, и регулируемым реактивным соплом и дополнен внутренним контуром с суживающимся реактивным соплом. Указанный внутренний контур соединен газовым каналом с внутренним контуром турбореактивного двухконтурного двигателя и снабжен устройством подогрева газа, поступающего из внутреннего контура турбореактивного двухконтурного двигателя. Привод тягового вентилятора выполнен в виде газовой турбины, размещенной ниже устройства подогрева газа по потоку. Стенки газового канала выполнены из трех слоев, где жаростойкий внутренний слой выполнен из интерметаллида, теплоизолирующий средний слой выполнен из кварцевых и кремнеземных тканей, а внешний слой выполнен из углепластика на основе высокопрочных углеродных волокон и высокотемпературной полимерной матрицы. Изобретение обеспечивает улучшение согласования взлетного и крейсерского режимов работы и повышение топливной экономичности авиационной силовой установки. 2 з.п. ф-лы, 3 ил.

Изобретение позволяет улучшить согласование взлетного и крейсерского режимов работы двигателя и повысить топливную экономичность двигателей гражданской и транспортной авиации. Указанный технический результат достигается тем, что турбореактивный двухконтурный двигатель летательного аппарата с выносными вентиляторными модулями содержит вентилятор, газогенератор с турбиной привода вентилятора, агрегат отбора мощности турбины привода вентилятора, соединенные валом. Выносные вентиляторные модули приводами подключены к агрегату отбора мощности, причем двигатель и выносные вентиляторные модули с регулируемыми соплами интегрированы с летательным аппаратом. Вентилятор двигателя дополнительно содержит входной направляющий аппарат, который выполнен в виде наружного неподвижного лопаточного венца и внутреннего поворотного лопаточного венца с приводом. Между вентилятором двигателя и газогенератором имеется кольцевое окно подвода воздуха со шторкой. Регулируемое сопло двигателя выполнено в виде регулируемого реактивного сопла наружного конура и суживающегося реактивного сопла внутреннего контура. Способ функционирования двигателя заключается в том, что на вход двигателя подают воздух, сжатый в вентиляторе, и после вентилятора разделяют поток воздуха между внутренним и наружным контурами двигателя. Поток воздуха внутреннего контура и топливо подают в камеру сгорания газогенератора внутреннего контура и сжигают топливо. Продукты сгорания топлива после газогенератора внутреннего контура и поток воздуха наружного контура направляют в сопла, а выработанную на турбине вентилятора мощность используют для привода вентилятора двигателя и выносных вентиляторных модулей. Двигатель и выносные вентиляторные модули создают реактивную тягу. На крейсерском режиме работы регулируют площадь кольцевого окна между наружным и внутренним контурами двигателя и положение лопаток внутреннего поворотного венца входного направляющего аппарата вентилятора и тем формируют внутренний кольцевой поток воздуха на вход в газогенератор внутреннего контура с меньшим расходом воздуха через газогенератор. Внешний кольцевой поток воздуха с большим расходом подают в наружный контур двигателя, что приводит к увеличению степени двухконтурности двигателя. Газообразные продукты сгорания топлива направляют в суживающееся реактивное сопло внутреннего контура, а воздух из наружного контура двигателя направляют в регулируемое сопло, при этом уменьшают подачу топлива в соответствии с возросшей степенью двухконтурности двигателя. 1 з.п. ф-лы, 4 ил..

Гибридный турбореактивный авиационный двигатель содержит камеру сгорания и расположенный вне камеры электрохимический генератор на топливных элементах, связанные входом с источником углеводородного топлива и потоком сжатого в двигателе воздуха, и контроллер. Выход камеры сгорания связан через турбину высокого давления с турбиной низкого давления. Выход электрохимического генератора связан с электродвигателем, установленным на валу турбины низкого давления. Контроллер связан с регулирующими органами, расположенными в тракте топлива и потока воздуха, и выполнен с возможностью регулирования соотношения потоков воздуха и потоков топлива, поступающих в электрохимический генератор и камеру сгорания, и совмещения для привода вала разнородных энергий электрогенератора и турбины низкого давления в виде электроэнергии и тепловой энергии продуктов сгорания. Изобретение направлено на уменьшение выбросов токсичных веществ за период полетного цикла, снижение шума, в том числе в зоне аэропортов, повышение экономичности. 6 з.п. ф-лы, 1 ил. .

 


Наверх