Патенты автора Киреев Валерий Юрьевич (RU)

Изобретение относится к исследованиям прочностных свойств пленок и мембран, анализу работы изделий на их основе. Изобретение может быть использовано для анализа зависимости прогиба от избыточного давления при проведении испытаний пленок и мембран и последующих расчетов параметров датчиков давления, изготовленных на их базе. Сущность: подготовка образцов при проведении испытаний включает в себя закрепление кристалла с мембраной на держателе, фиксируется исходное положение и форма мембраны при свободном размещении образца на поверхности стола, рассчитывается площадь поверхности мембраны S - для простой формы мембраны путем аналитического расчета, а для сложной формы мембраны численно посредством наложения треугольной сетки, вычисляется исходный эффективный прогиб мембраны w0=wэ на основе анализа общей площади поверхности мембраны S и площади ее основания S0=πа2, где а - радиус отверстия в подложке, над которым сформирована мембрана, из соотношения после чего производится закрепление держателя с образцом в экспериментальной установке для создания избыточного давления таким образом, чтобы форма мембраны и ее эффективный прогиб не отличались от формы и эффективного прогиба свободно расположенной на поверхности стола мембраны на кристалле. При подаче на образец одностороннего избыточного давления производится фиксация текущей топографии поверхности мембраны и определяется значение текущего вертикального перемещения вершины образовывающегося купола мембраны относительно первоначального положения - изменение величины прогиба мембраны w относительно w0. Производится анализ изменения топографии поверхности мембраны при увеличении одностороннего избыточного давления, в том числе фиксируется момент изменения положения мембраны относительно поверхности подложки для хлопающих мембран. Для расчета механических свойств и анализа зависимости между величиной приложенного избыточного давления Р и соответствующим максимальным прогибом мембраны w, наблюдающимся в центре мембраны, используются величины, определенные на нелинейном участке зависимости w(P) - вблизи высоких давлений, при этом в качестве прогиба w используется разница между текущим прогибом мембраны при наличии избыточного давления Р и исходным эффективным прогибом w0 при отсутствии приложенного избыточного давления. Технический результат: повышение точности исследования пленочных материалов и изделий на их основе, в частности однослойных и многослойных мембран толщиной порядка единиц микрометров и менее, в том числе имеющих начальный прогиб при отсутствии избыточного давления, в том числе мембран со сложной исходной формой топографии поверхности, в том числе хлопающих мембран; повышение наглядности, удобства и чувствительности анализа зависимости прогиба мембран от избыточного давления. 2 ил.

Способ может использоваться при межоперационном контроле механических напряжений и дефектов в функциональных слоях. Способ включает эллипсометрические измерения показателя преломления на локальных участках пленки, однократное определение на каждом участке пленки толщины dƒ и показателей преломления для обыкновенного no и необыкновенного ne лучей, по которым рассчитывают значения величины двойного лучепреломления Δn: Δn=(no-ne). Карту механических напряжений σ и вызванных ими дефектов определяют по закону фотоупругости: σ=Δn/k, где k - упругооптическая постоянная, определяемая по формуле: k=Δn/σ, с использованием величины σ, определенной по формуле Стоуни: где ds, ν и Es - соответственно толщина, коэффициент Пуассона и модуль Юнга подложки, R - эффективный радиус кривизны подложки с пленкой. Топографический рельеф - локальные радиусы кривизны поверхности - определяют по величине двойного лучепреломления Δn и толщине слоя dƒ. Технический результат - уменьшение времени и сложности контроля дефектности и механических напряжений и расширение номенклатуры измеряемых параметров. 1 табл., 2 ил.

Использование: для изготовления многослойных диэлектрических или полупроводниковых покрытых диэлектрическим слоем подложек. Сущность изобретения заключается в том, что способ сращивания диэлектрических пластин под действием сильного электрического поля включает нанесение промежуточного металлического слоя на лицевую сторону одной из диэлектрических пластин, формирование рисунка в этом слое, совмещение пластин, обращенных лицевыми сторонами друг к другу и размещенных в вакуумной камере между двумя электродами, откачку камеры до уровня вакуума от 10-3 Па до 10-5 Па, нагрев пластин до температуры от 200°С до 300°С, сжатие электродов с давлением от 3⋅103 Па до 8⋅103 Па и подключение электродов к источнику высокого напряжения, обеспечивающего напряженность электрического поля от 5⋅104 В/см до 8⋅104 В/см в течение от 150 минут до 200 минут со сменой полярности напряжения через каждые 20-30 минут. Технический результат: обеспечение возможности получения проводящих соединительных слоев между диэлектрическими подложками с возможностью их нанесения по шаблону или по всей площади подложки одновременно, где прочность соединения обеспечивается диффузией соединительного слоя в подложки, групповым методом. 1 ил., 1 табл.

Изобретение относится к производству интегральных микросхем и микроэлектромеханических приборов и может быть использовано для формирования трехмерных структур топологических элементов функциональных слоев на поверхности подложек без использования фотошаблонов и фоторезистивных масок. Способ формирования трехмерных структур топологических элементов функциональных слоев на поверхности кремниевой подложки включает размещение подложки в вакуумной реакционной камере, откачивание реакционной камеры, локальное облучение подложки от внешнего источника, подачу к подложке реагента, из которого на облучаемые локальные области подложки осаждают топологические элементы с трехмерными структурами функционального слоя. Локальное облучение подложки осуществляют с использованием лазера с любой стороны подложки с энергией облучения от внешнего источника, превышающей энергию десорбции осаждаемого материала на ней. Время задержки между включением внешнего источника для локального облучения и началом подачи реагента составляет не менее 100 нc, а осаждаемый материал представляет собой атомы индия или алюминия. Обеспечивается повышение энергоэффективности процесса и повышение равномерности осаждаемого слоя в структуре за счет облучения с любой стороны подложки, снижение себестоимости структуры изделия и сокращения времени осаждения слоя за счет использования одного реагента. 3 ил., 2 пр.

Изобретение относится к рентгеновской технике. Технический результат - повышение интенсивности рентгеновского излучения, увеличение продолжительности срока эксплуатации прибора, расширение перечня излучаемых длин волн, обеспечение возможности выбора количества длин волн и формы рентгеновского излучения. Используют матрицу катодов, сфокусированную на локальной части мишени анода, состоящей из n видов материалов, катоды имеют m разных радиусов кривизны острия. Это обеспечивает возможность выборочной подачи напряжения на отдельный катод из матрицы катодов по результатам расчета количества генерируемых длин волн L рентгеновского источника по формуле L=n×m, причем количество генерируемых длин волн L должно быть не менее количества слоев исследуемой структуры. 2 н.п. ф-лы, 5 ил.

Суть настоящего изобретения состоит в процессе формирования трехмерных структур топологических элементов функциональных слоев на поверхности подложек. Способ основан на применении перспективной «аддитивной технологии», то есть топологические элементы функционального слоя создаются на локальных участках подложки путем прямого осаждения на них материала. В процессе формирования элементов не используются фотошаблоны и фоторезистивные маски. Задачей настоящего изобретения является повышение воспроизводимости и точности формирования топологических элементов функциональных слоев, а также увеличение производительности и снижение стоимости способа их получения. 3 ил.

Изобретение относится к области микроэлектроники, в частности к технологии изготовления полупроводниковых структур, являющихся элементной базой функциональной микроэлектроники, и может быть использовано в технологии изготовления интегральных чувствительных элементов газовых датчиков с диэлектрическими мембранами. Задачей изобретения является повышение выхода годных кристаллов и увеличения рентабельности изделия за счет увеличения механической прочности структуры в целом благодаря освобождению мембраны одной операцией травления подложки в конце технологического маршрута и за счет уменьшения механических напряжений в мембране благодаря использованию чередующихся слоев. 7 ил.

Изобретение относится к твердотельному суперконденсатору и может быть использовано в устройствах хранения энергии разнообразных интегральных микросхем. Суперконденсатор содержит два электрода, размещенный между ними диэлектрический слой, конформно расположенный на нижнем электроде, при этом верхний электрод конформно расположен на диэлектрическом слое, нижний электрод сформирован на профильно-структурированном основании из пористого оксида алюминия или титана. Увеличение плотности энергии суперконденсатора, повышение воспроизводимости формирования структуры с регулируемыми значениями емкости и плотности запасенной энергии является техническим результатом изобретения. 2 з.п. ф-лы, 5 ил.

Изобретение относится к вакуумно-плазменной технике, а именно к источникам атомов металла преимущественно для осаждения тонких металлических пленок на диэлектрические подложки в вакуумной камере, и к источникам быстрых атомов и молекул газа. Установка содержит вакуумную камеру 1, эмиссионную сетку из осаждаемого металла 2, полый катод 3, анод 4, источник питания разряда 5, источник ускоряющего напряжения 6, мишень 7 из фольги осаждаемого металла, покрывающую внутреннюю поверхность катода 3, держатель 8 подложек, покрытый изнутри экраном 9 из фольги осаждаемого металла, и источник напряжения смещения 10, который позволяет при неизменных потоках атомов металла и быстрых атомов газа регулировать энергию последних от нуля до 1000 эВ. Технический результат - снижение потерь осаждаемого металла и повышение однородности осаждаемой пленки.3 з.п. ф-лы, 4 ил.

 


Наверх