Патенты автора Королева Наталья Александровна (RU)

Изобретение относится к электротехнике, в частности, к технологии изготовления фотоэлементов с радиационно-стойким защитным стеклом. Способ изготовления стеклянных пластин для фотопреобразователей космического назначения включает создание слоя поверхностного сжатия на стеклянной пластине, кислотное травление в растворе плавиковой кислоты на глубину, равную или большую глубины сжатого слоя стекла, защиту травленной поверхности стекла химической закалкой, кислотное травление выполняют при вертикальном поступательно-возвратном перемещении стеклянных пластин в растворе, а после химической закалки выполняют одностороннее капельное нанесение на стеклянные пластины защитного слоя силиконового каучука, причем в качестве растворителя силиконового каучука используют смесь Сольвента и бензина Нефрас. Изобретение обеспечивает повышение выхода годных стеклянных пластин, фотоэлементов на операциях сборки и монтажа за счет обеспечения однородности травления стеклянных пластин в процессе химико-динамического травления; увеличение механической прочности стеклянных пластин за счет стравливания дефектов скрайберной резки и полимерной защиты тыльной стороны стеклянных пластин после химической закалки. 8 ил., 1 табл.

Изобретение относится с солнечной энергетике, в частности, к способам изготовления трехкаскадных фотопреобразователей на германиевой подложке. Cпособ изготовления фотопреобразователя на утоняемой германиевой подложке включает создание на германиевой подложке с выращенными эпитаксиальными слоями трехкаскадной структуры фоторезистивной маски с окнами под лицевые контакты фотопреобразователя и диода, вытравливание диодной площадки, напыление слоев лицевой металлизации, удаление фоторезиста, создание фоторезистивной маски с окнами под меза-изоляцию фотопреобразователя и диода, вытравливание мезы, нанесение защитного покрытия, химико-динамическое травление германиевой подложки, удаление защитного покрытия, напыление тыльной металлизации, отжиг контактов, химико-динамическое травление подложки выполняют до израсходования плавиковой кислоты, лимитирующей количество стравливаемого германия, в растворе продуктов травления, причем раствор продуктов травления используют многократно, вновь добавляя плавиковую кислоту и перекись водорода в соотношении объемных частей, при этом плавиковой кислоты (46%) 8÷17 объемных частей, перекиси водорода (30%) 8÷19 объемных частей, раствора продуктов травления 84÷64 объемных частей, а затем выполняют химико-динамическую обработку германиевой подложки в растворе ортофосфорной кислоты, перекиси водорода и воды. Изобретение обеспечивает повышение параметров и увеличение выхода годных фотопреобразователей, изготавливаемых на утоняемой германиевой подложке, снижение затрат на вторичную переработку стравленного германия и утилизацию плавиковой кислоты. 5 ил., 4 табл.

Изобретение относится к солнечной энергетике, а именно к способам изготовления фотопреобразователей на трехкаскадных эпитаксиальных структурах GaInP/Ga(In)As/Ge, выращенных на германиевой подложке. Способ изготовления фотопреобразователя с наноструктурным просветляющим покрытием включает создание на германиевой подложке с выращенными эпитаксиальными слоями трехкаскадной структуры лицевого и тыльного контактов на основе серебра; выполнение меза-изоляции; отжиг контактов; вскрытие оптического окна травлением; нанесение просветляющего покрытия, содержащего слои ТiO2 и Al2O3, методом электронно-лучевого напыления; выполнение дисковой резки эпитаксиальной структуры; выпрямление фотопреобразователя посредством охлаждения в парах азота; после отжига контактов выпрямление посредством охлаждения в парах азота металлизированной подложки; выполнение дисковой резки эпитаксиальной структуры; далее осуществляют вскрытие оптического окна травлением; наносят просветляющее покрытие последовательным напылением слоев ТiO2 толщиной 5÷35 нм без ионно-плазменного ассистирования, ТiO2 толщиной 10÷40 нм с ионно-плазменным ассистированием, Al2O3 толщиной 70÷80 нм без ионно-плазменного ассистирования, а затем выполняют химико-динамическое травление просветляющего покрытия в растворе гидроокиси тетраметиламмония, перекиси водорода и воды при следующем количественном соотношении компонентов: 1÷1,5 мас.%, 10÷20 мас.%, 89÷78,5 мас.% соответственно. Изобретение обеспечивает повышение параметров фотопреобразователя за счет улучшения оптических свойств просветляющего покрытия и минимизации шунтирующего воздействия плазмы на р/n-переходы, выходящие на поверхность мезы. 8 ил.

Изобретение относится к негативным фоторезистам для процессов формирования топологических элементов микроэлектронных устройств с использованием «взрывной» фотолитографии. Предложена композиция негативного фоторезиста для «взрывной» фотолитографии, содержащая (мас.%) фенолоформальдегидную смолу (25,0-40,0), гексаметоксиметилмеламин (5,0-8,0), α-(4-тозилоксимино)-4-метоксибензилцианид (1,0-2,0), органическое основание (0,04-0,20), фторалифатический эфир (0,1-2,0), Тинувин 1130 (1,0-10,0) и органические растворители (50,0-66,0). Технический результат – предложенная композиция фоторезиста позволяет получать четкий рисунок фотошаблона и увеличить отрицательный угол наклона маски фоторезиста, что улучшает качество проведения «взрывной» фотолитографии. 2 ил., 11 пр.

Изобретение относится к технологии изготовления трехкаскадных фотопреобразователей со встроенным диодом. Согласно изобретению на трехкаскадной полупроводниковой структуре GaInP/GaAs/Ge, выращенной на германиевой подложке с p-AlGaInP слоем потенциального барьера, p++-AlGaAs и n++-GaInP слоями туннельного перехода верхнего каскада, создают фоторезистивную маску с окнами лицевых контактов фотопреобразователя и диода, удаляют в диодном окне маски полупроводниковые слои, причем вытравливают p-AlGaInP слой потенциального барьера полностью или частично в смеси концентрированных соляной и фтористоводородной кислот в количественном соотношении объемных частей 5÷7 и 3÷5 соответственно, p++-AlGaAs слой туннельного перехода удаляют в смеси концентрированных соляной и лимонной (50%) кислот в количественном соотношении объемных частей 6÷10 и 8÷12 соответственно. Технический результат изобретения заключается в повышении однородности и воспроизводимости процесса травления, а также в улучшении параметров встроенного диода. 2 ил., 1 табл.
Изобретение относится к области электрического оборудования, в частности к полупроводниковым приборам, а именно к способам получения трехкаскадных преобразователей. Технический результат, достигаемый в предложенном способе, изготовления фотопреобразователя заключается в улучшении однородности и воспроизводимости стравливания контактного слоя структуры, повышении фотоэлектрических параметров. Достигается это тем, что формируют контактную металлизацию на фронтальной и тыльной поверхностях многослойной полупроводниковой структуры Ga(In)As/GaInP/Ga(In)As/Ge, выращенной на германиевой подложке, вжигают контакты, вытравливают мезу, удаляют контактный слой структуры химикодинамическим травлением в водном растворе гидроокиси тетраметиламмония и перекиси водорода при количественном соотношении компонентов, соответственно в мас.%: гидроокись тетраметиламмония 0,7÷1,3, перекись водорода 6,5÷17,7, вода 92,8÷81. 1 табл.
Изобретение относится к области электрического оборудования, в частности к фотопреобразователям. Техническим результатом изобретения является улучшение качества контактов и увеличение выхода годных приборов. В способе изготовления фотопреобразователя со встроенным диодом, включающем создание на германиевой подложке с выращенными эпитаксиальными слоями трехкаскадной структуры фоторезистивной маски с окнами под лицевые контакты фотопреобразователя и встроенного диода, вытравливание диодной площадки, напыление слоев лицевой металлизации, удаление фоторезиста, создание фоторезистивной маски с окнами под меза-изоляцию фотопреобразователя и встроенного диода, вытравливание мезы, удаление фоторезиста, напыление слоев тыльного контакта, отжиг контактов, вскрытие оптического окна травлением, нанесение просветляющего покрытия, вырезку из пластины фотопреобразователя со встроенным диодом, вытравливание диодной площадки проводят капельным смачиванием, а для напыления слоев лицевой металлизации используются слои хрома толщиной 5÷15 нм, серебра толщиной 5÷15 нм, золото-германия толщиной 50÷80 нм, серебра толщиной 5÷6 мкм, золота толщиной 30÷80 нм, кроме того, после создания фоторезистивной маски с окнами под меза-изоляцию фотопреобразователя и встроенного диода проводят вытравливание мезы с одновременным удалением эпитаксиальных наростов на тыльной стороне подложки, а затем наносят защитное покрытие, после чего стравливают подложку, а после удаления защитного покрытия и фоторезиста напыляют слои тыльной металлизации. 1 табл.

 


Наверх