Патенты автора Самсонов Владимир Михайлович (RU)

Изобретение относится к обработке клеевых композиций горячего отверждения, в частности к клеевым композициям на основе эпоксидного олигомера, предназначенного как для склеивания металлических изделий, так и склеивания металла с фторопластами, полимерами, пленками и другими материалами, а также для устранения дефектов металлоконструкций, емкостей, трубопроводов и т.д., возникающих в процессе их эксплуатации в результате коррозии и механического износа, и применяемых в самолето- и автомобилестроении, а также в других отраслях промышленности. Способ подготовки клеевой композиции перед нанесением ее на рабочую поверхность включает загрузку в емкость смеси, ее перемешивание путем воздействия ультразвуковой энергией при мощности воздействия ультразвуковой энергией 62…85 Вт/см3 до достижения клеевой композицией температуры 26-52°С. Смесь содержит эпоксидированную новолачную смолу, эпоксидированную смолу на основе резорцина, отвердитель - бензофенонтетракарбоновую кислоту и 1,3 диоксолан и дополнительно порошкообразный электрокорунд фракцией (1-2)*10-9 м. Изобретение позволяет получить клеевую смесь с высокотемпературным диапазоном применения, повысить адгезионные способности эпоксидной клеевой смеси в 6-8 раз, повысить прочность клеевого шва на сдвиг и отрыв. 3 ил., 1 табл.

Изобретение относится к способам получения металлических композиционных материалов на основе интерметаллида титана, армированных высокомодульными волокнами, применяемых в авиационной технике, в частности, для упрочнения элементов газотурбинных двигателей, а также относится к установкам для непрерывного изготовления тонкой полосы металломатричного композита. Способ упрочнения элемента турбомашины металломатричным композитом на основе интерметаллида титана включает послойное наматывание неоксидного керамического армирующего волокна на основе карбида кремния на конструктивный элемент с образованием ленты, расплавление порошковой смеси для получения матричного расплава на основе интерметаллида титана требуемого состава с температурой плавления ниже температуры плавления армирующего волокна, нанесение на ленту плакирующего слоя из сплава, пропитку каждого слоя матричным расплавом, кристаллизацию расплава и сплавление армирующих волокон под давлением с образованием металломатричного композита, при этом нанесение плакирующего слоя и пропитку матричным расплавом производят перед наматыванием волокон на конструктивный элемент пропусканием через матричный расплав армирующих волокон в виде ленты при расстоянии между волокнами в ней, равном 1-3 диаметрам волокна, с поверхностной плотностью 40-180 г/м2, при этом ленту наматывают на элемент ротора турбомашины, являющегося одним из валков валкового кристаллизатора, а кристаллизацию расплава и сплавление армирующих волокон производят в защитной атмосфере под давлением второго охлаждающего валка кристаллизатора. Установка для осуществления способа содержит емкость для подготовки матричного расплава с питающим желобом, два валка кристаллизатора, взаимодействующие друг с другом, соединенные с механизмом вращения, причем по меньшей мере один из валков оснащен системой охлаждения, две торцевые стенки, установленные по торцам валков и образующие приемную емкость, сообщенную с емкостью для подготовки матричного расплава, установленное на желобе средство, регулирующее поступление расплава в приемную емкость, устройство вторичного охлаждения, узел ввода армирующих волокон в валки, защитный кожух для создания защитной атмосферы, соединенный со средством подачи защитного газа, и источники тепловой энергии, при этом она снабжена средством, препятствующим кристаллизации матричного расплава на охлаждаемом валке кристаллизатора, в качестве одного из валков кристаллизатор содержит элемент ротора в виде тела вращения, а устройство вторичного охлаждения выполнено с возможностью дополнительного охлаждения и обжатия металломатричного композита на поверхности валка элемента ротора турбомашины, при этом она содержит по меньшей мере два источника тепловой энергии, один из которых установлен над емкостью для подготовки матричного расплава, а другой - над приемной емкостью. Изобретение направлено на увеличение скорости формирования металломатричного композита, модуля его упругости, прочности и жаростойкости при высокой окислительной стойкости. 2 н. и 7 з.п. ф-лы, 1 ил., 1 табл., 1 пр.

Использование: для автоматической сигнализации наличия высокотемпературной агрессивной среды. Сущность изобретения заключается в том, что ионизационный датчик сигнализации наличия высокотемпературной агрессивной среды содержит средство закрепления на корпус объекта контроля, центральный изолированный металлический электрод с контактами для подключения к источнику переменного тока, электрод покрыт оксидной пленкой толщиной, обеспечивающей ток ионизации не менее 200 мкА. Технический результат: обеспечение возможности стабильности работы системы сигнализации. 5 з.п. ф-лы, 7 ил., 3 табл.

Изобретение относится к области исследования устройств на герметичность и может быть использовано для проверки на герметичность мест заделки измерительных линий датчиков температуры. Сущность: стенд содержит ванну (1) с жидкостью (2), площадку (3), установленную с возможностью перемещения относительно зеркала жидкости, систему подачи сжатого газа. На площадке (3) выполнен узел крепления и герметизации изделия. Кроме того, стенд снабжен стаканом (5) с патрубком (6), соединенным с системой подачи сжатого газа. Стакан (5) герметично закреплен вокруг измерительной части (7) термопары для создания вокруг нее избыточного давления. Узел крепления и герметизации выполнен на площадке (3) в виде отверстия (10) под корпус гребенки термопары и средств его фиксации. При этом в качестве жидкости (2) стенд содержит жидкий органический диэлектрик с нормированными свойствами на основе одного из группы низших спиртов: метиловый спирт, этиловый спирт, пропиловый спирт, изопропиловый спирт. Технический результат: возможность определения качества пайки мест заделки измерительных линий в корпусе гребенки термопары до ее монтажа на изделие. 2 з.п. ф-лы, 1 ил.

Изобретение относится к авиадвигателестроению, конкретно к реактивным плоским соплам газотурбинных двигателей маневренных летательных аппаратов. Устройство поворота плоского сопла турбореактивного двигателя содержит неподвижный корпус, плоское сопло, установленное на подшипнике с возможностью поворота в поперечной плоскости в противоположные стороны от нейтрального положения на угол до 90°, электрический исполнительный механизм и привод. Устройство дополнительно снабжено двумя контактными уплотнениями и кольцевыми вкладышами, двумя фланцами, кольцевым корпусом шестерни, наружным корпусом-обоймой с кольцевой накладкой и кольцевым замком. Привод выполнен в виде вала с шестерней, а фланцы выполнены с зубчатыми торцевыми контактными поверхностями и на их противоположных торцах с кольцевыми канавками под кольцевые вкладыши. Один из фланцев жестко закреплен на неподвижном корпусе, а другой на сопле. Фланцы направлены зубчатыми торцевыми контактными поверхностями навстречу друг другу и входят в зацепление с шестерней привода. Кольцевой корпус шестерни установлен между фланцами и имеет на боковой поверхности углубление под вал привода. В кольцевые канавки установлены кольцевые вкладыши с композитными вставками, причем наружный корпус-обойма с кольцевой накладкой и кольцевым замком опираются на вкладыши и на фланцы, закрепленные на корпусе и сопле с образованием двухрядного упорного подшипника скольжения. Контактные уплотнения расположены на фланцах перед подшипником для исключения просасывания через него воздуха. Изобретение позволяет обеспечить всеракурсность отклонения вектора тяги на плоском сопле, снижает габариты системы поворота по сравнению с известными устройствами, позволяет реализовать механизм поворота сопла в концепции «электрического» привода. 1 з.п. ф-лы, 2 ил.

Изобретение относится к области авиационной техники, к способам управления двухроторным газотурбинным двигателем. При останове двигателя генерируемую вращением вала ротора низкого давления электроэнергию передают на электродвигатель-генератор вала ротора высокого давления, для создания дополнительного ускорения, обеспечивающего отношение продолжительности выбега вала ротора высокого давления к продолжительности выбега вала ротора низкого давления, равное 1,5…6,0. Использование изобретения позволяет исключить эффект «прихватывания» вала ротора высокого давления при останове. 1ил.

Изобретение относится к устройствам для регистрации сигналов от набора датчиков физических величин на внутриволоконных решетках Брэгга в системах встроенного неразрушающего контроля. Квазираспределенная оптико-электронная информационно-измерительная система содержит источник широкополосного излучения, размещенные в технологическом порядке и соединенные между собой волоконно-оптическими кабелями оптический переключатель, оптический разветвитель, фотоприемное устройство (ФПУ) с блоком регистрации и преобразования сигналов, ЭВМ, объект контроля, систему термостабилизации опорных брэгговских решеток. Система также содержит размещенный на объекте контроля по меньшей мере один измерительный канал с датчиками на брэгговских решетках и опорными брэгговскими решетками с известной характеристикой длины волны отраженного излучения, соединенные одной стороной волоконно-оптического кабеля с датчиками на брэгговских решетках и опорными брэгговскими решетками с оптическим разветвителем. При этом система снабжена по меньшей мере одним дополнительным оптическим разветвителем, соединенным волоконно-оптическим кабелем с оптическим переключателем, фотоприемным устройством (ФПУ) с блоком регистрации и преобразования сигналов и соединенным другой стороной волоконно-оптического кабеля с датчиками на брэгговских решетках и опорными брэгговскими решетками с дополнительным оптическим разветвителем, при этом датчики и опорные брэгговские решетки соединены последовательно. Технический результат - повышение долговечности измерительного тракта систем встроенного неразрушающего контроля технических устройств ответственного применения. 3 з.п. ф-лы, 1 ил.

Изобретение относится к роторам турбомашин, используемых в авиации. Барабан ротора турбомашины выполнен в форме полого цилиндрического тела вращения вокруг продольной оси с одним и более венцами, со средствами для крепления хвостовиков лопаток, расположенных через равные промежутки по наружной поверхности, при этом барабан выполнен из металломатричного композита с перекрестной укладкой армирующих волокон, а средства для крепления хвостовиков лопаток выполнены в виде корневых элементов под сварку по форме профиля лопатки, при этом на внутренней поверхности барабана из композита выполнены наплывы, фланцы или цапфы с закладными элементами под сварку, причем наплывы расположены под корневыми элементами. Металломатричный композит сформирован сплавлением одной части намотанных, по меньшей мере, под одним углом и другой части из «свалянных» волокон из SiC, заключенных в матрицу из титанового сплава. Изобретение обеспечивает снижение массы, повышение надежности, прочности ободной части барабана, а также повышение технологичности изготовления. 1 з.п. ф-лы, 2 ил.

Изобретение относится к области энергетического машиностроения и может быть использовано для привода потребителей механической энергии. Роторная машина объемного типа содержит корпус 1 с профильным элементом 2, выполненным в виде выступа, пустотелое колесо-разделитель 6 с отверстием под элемент 2 и пустотелое центральное тело 4 с каналом подвода и каналом отвода рабочего тела и с продольным радиальным пазом под колесо 6. Колесо 6 установлено в пазу тела 4 с возможностью вращения вокруг своей продольной оси. Корпус 1 установлен с возможностью вращения вокруг своей оси в одной плоскости с осью вращения колеса 6 и кинематически связан с ним. Машина снабжена трубчатым профильным элементом 5 с каналом подвода и каналом отвода рабочего тела и регулирующими клапанами 12, 13, установленными на каналах отвода рабочего тела из элемента 5 и тела 4. Боковая поверхность элемента 5 выполнена в виде двух сопряженных геометрических тел вращения. Элемент 5 жестко связан с телом 4 и установлен в колесо 6 с возможностью его обкатывания по внутренней поверхности одного тела вращения. Поверхность другого тела вращения равноудалена от оси тела 4 и технологически сопряжена с элементом 2. Использование направлено на повышение кпд, снижение расхода топлива. 2 ил.

Изобретение относится к созданию оборудования для разделения многофазных смесей, в частности к сепараторам газ/жидкость, действие которых основано на разности плотностей фаз. Газожидкостный сепаратор содержит вертикальный цилиндрический корпус с патрубком подачи газожидкостной смеси, внутренний цилиндр с каналом, сообщенным рядом отверстий, выполненных вдоль центральной оси, с полостью канала и с полостью под нижней поверхностью направляющего аппарата и патрубком для отвода газа, винтовой направляющий аппарат, размещенный между ними и образующий в спиральном канале в потоке газожидкостной смеси участки с флуктуациями в скорости, камеру расширения с патрубком для отвода дегазированной жидкости в нижней части корпуса. Газожидкостный сепаратор снабжен диспергирующим элементом с по меньшей мере одним участком сопротивления, образующим в газожидкостной смеси участок с флуктуациями в скорости потока, участок сопротивления выполнен в виде перфорации или перфорации и выступов или перфорации и впадин на диспергирующем элементе. При этом диспергирующий элемент установлен первым со стороны патрубка подачи газожидкостной смеси над направляющим аппаратом с образованием между ними спирального канала. Техническим результатом является повышение степени отделения газа от жидкости. 1 ил., 1 табл.

Изобретение относится к оптоволоконным технологиям, в частности к оптическим датчикам давления и температуры, в конструкции которых использованы оптические волокна. Устройство для измерения давления и температуры в потоке газа и/или жидкости содержит корпус датчика, мембрану, жестко прикрепленную к торцу корпуса, волоконно-оптический световод с защитным покрытием, расположенный в корпусе, по меньшей мере, одну дифракционную решетку Брэгга, нанесенную на волоконно-оптический световод, и волоконно-оптический кабель, закрепленный в корпусе и соединенный с системой обработки сигнала. Устройство снабжено, выполненным на торце корпуса со стороны мембраны, средством соединения с напорным устройством, по меньшей мере, одной структурой с поверхностным рельефом в соответствии с геометрией дифракции Брэгга, выполненной на поверхности мембраны внутри корпуса датчика. Волоконно-оптический световод соединен с волоконно-оптическим кабелем и прикреплен к корпусу и к мембране с образованием подмембранной полости. При этом, по меньшей мере, одна дифракционная решетка Брэгга, нанесенная на волоконно-оптический световод, расположена вне зоны крепления световода к корпусу. Система обработки сигнала содержит соединенные волоконно-оптическим кабелем оптический разветвитель, полупроводниковый источник света, оптический анализатор спектра и соединенный с ним регистратор. 2 н. и 6 з.п.ф-лы, 5 ил.

Изобретение относится к области ядерной электроники, а именно к амплитудным спектрометрам ионизирующего излучения. Формирователь сигналов амплитудного спектрометра ионизирующего излучения содержит фильтр для максимизации отношения сигнал-шум, вход которого является входом формирователя сигналов, амплитудный дискриминатор и первый пиковый детектор, входы которых подключены к выходу фильтра для максимизации отношения сигнал-шум, высокочастотный полосовой фильтр, вход которого подключен ко входу формирователя сигналов, и временной дискриминатор, вход которого подключен к выходу высокочастотного полосового фильтра, при этом в него введены быстродействующий пиковый детектор, двухканальный мультиплексор и инспектор наложений, причем вход быстродействующего пикового детектора подключен к выходу высокочастотного полосового фильтра, выход быстродействующего пикового детектора подключен к первому входу двухканального мультиплексора, а второй вход двухканального мультиплексора подключен к выходу первого пикового детектора, входы управления обоих пиковых детекторов и двухканального мультиплексора подключены к соответствующим выходам инспектора наложений, два входа которого подключены к выходам временного и амплитудного дискриминаторов, а выход двухканального мультиплексора является выходом формирователя сигналов. Технический результат - повышение его пропускной способности устройства. 6 ил.
Изобретение относится к способам сортировки элементов двигателей различного назначения, бывших или находящихся в эксплуатации, в частности к способам дефектации партий элементов в виде блоков сопловых лопаток турбин высокого давления для газотурбинного двигателя и их последующей сортировки на пригодные к эксплуатации и подлежащие восстановлению. В данном способе для элементов в виде блоков сопловых лопаток турбин высокого давления газотурбинного двигателя в качестве рабочей жидкости используют воду с давлением Рвх=1,4…1,6 кгс/см2, в качестве характеристик воды до исследуемого элемента измеряют перепад давления на мерном участке, определяют расход воды через щель, отверстия в блоке и лопатках и рассчитывают текущие расходы Gщели; Gотв «С»; и Gотв.бл, а оценку элементов производят путем сравнения рассчитанных текущих расходов с заранее установленными оптимальными интервалами их значений, где Gщели - расход воды через щель одной лопатки; Gотв «С» - суммарный расход воды через все отверстия блока; Gотв.бл - среднеарифметический расход воды через отверстия одной лопатки. Расход воды через щель, отверстия в блоке и лопатках определяют с помощью прибора прямого и/или косвенного измерения, а в качестве исследуемых элементов используют новые и/или бывшие в эксплуатации элементы. Технический результат изобретения - такой способ позволит сократить количество необоснованно выбракованных и необоснованно признанных годными для эксплуатации блоков сопловых лопаток, повысить надежность и качество сборки и ремонта газотурбинных двигателей, снизить затраты. 2 з.п. ф-лы, 1 табл.

Изобретение относится к гидравлическим машинам, используемым в области авиадвигателестроения, в частности к насосам с вращающимися во взаимном зацеплении элементами. Шестеренчатый насос содержит корпус 1 со съемными торцевыми крышками 2, ось 3 с осевым отверстием, приводной вал 4, по меньшей мере, одну контактирующую пару зубчатых шестерен. Внутренняя шестерня 5 установлена на оси 3 и имеет выполненные между зубьев радиальные отверстия 6. Внешняя шестерня 7 выполнена кольцевой и охватывающей внутреннюю шестерню 5, контактируя с ней по внутренней торцевой поверхности. Средства соединения с магистралями подвода и отвода среды выполнены на крышке 2 со стороны, противоположной приводному валу 4, и соединяют внутреннее пространство корпуса 1 с магистралью подвода, а отверстие оси - с магистралью отвода нагнетаемой среды. Транзитное отверстие 19 в стенке оси 3 выполнено под углом от радиуса, образующего аксоидную поверхность в точке касания шестерен 5 и 7. Изобретение направлено на уменьшение размеров и веса насоса, снижение износа шестерен, уменьшение вибрации, повышение надежности осевой фиксации и плавности его работы. 4 ил.

 


Наверх