Патенты автора Чичкань Александра Сергеевна (RU)

Изобретение относится к области получения графена, модифицированного атомами азота, который находит применение в электронных устройствах для запасания энергии, таких как суперконденсаторы, литий-ионные аккумуляторы. Для приготовления графена, модифицированного атомами азота, нагревают дисперсный простой или смешанный оксид металлов II группы в проточном реакторе в течение 20-30 мин в токе инертного газа при расходе 15-20 л/ч до 650-700°С. Затем, не охлаждая реактора, инертный газ заменяют на смесь газов NH3-C2H2-C2H4 и проводят реакцию разложения газов при 650-700°С в течение 30-120 мин и расходе газовой смеси 5-15 л/ч. Зауглероженный продукт охлаждают в токе инертного газа. Осуществляют травление зауглероженного оксида металла обработкой раствором кислоты для очистки углеродной плёнки от исходного оксида металла. Полученный образец азотсодержащего графена отфильтровывают, промывают и высушивают. Получают графен, модифицированный атомами азота, содержащий 1-5 углеродных слоев и до 5 мас.% азота. Изобретение позволяет упростить получение графена, модифицированного атомами азота, повысить его качество. 6 з.п. ф-лы, 1 табл., 16 пр.

Изобретение может быть использовано для разделения газовых смесей. Используемая для разделения газовых смесей керамическая мембрана имеет следующий состав, мас.%: оксид алюминия 30-54; силикат натрия 42-68; углеродные нанотрубки УНТ с внешним диаметром 1-5 нм с трехслойной структурой и удельной поверхностью 350-1000 м2/г 1-4. Способ приготовления керамической мембраны для разделения газовых смесей включает смешение термоактивированного гиббсита - Al(OH)3 с силикатом натрия и углеродными нанотрубками УНТ с внешним диаметром 1-5 нм с трехслойной структурой и удельной поверхностью 350-1000 м2/г, последующее добавление раствора азотной кислоты. Полученную массу тщательно перемешивают и излишнюю влагу удаляют до полусухого состояния порошка. Полученный порошок прессуют, спрессованные таблетки подвергают термообработке - сначала выдерживают при температуре не выше 150°С, затем при температуре не выше 400°С. Полученную мембрану в виде таблетки прокаливают без доступа воздуха при 850-1100°С. Изобретение обеспечивает увеличение фактора разделения газовых смесей. 2 н.п. ф-лы, 3 ил., 2 табл., 5 пр.

Изобретение может быть использовано при получении композиционных материалов. Исходные углеродные наноматериалы, например нанотрубки, нанонити или нановолокна, обрабатывают в смеси азотной и соляной кислоты при температуре 50-100°С не менее 20 мин, промывают водой и сушат. Затем пропитывают спиртовым раствором олигоорганогидридсилоксана, например олигоэтилгидридсилоксана или олигометилгидридсилоксана, выпаривают, сушат на воздухе при температуре не более 200°С не менее 20 мин. После этого прокаливают в инертной среде при температуре 600-800°С не менее 20 мин. Полученные углеродные наноматериалы с нанесенным диоксидом кремния имеют высокую стойкость к окислению. 1 з.п. ф-лы, 4 ил., 6 пр.

 


Наверх