Патенты автора Шельдешов Николай Викторович (RU)

Изобретение относится к мембранной технике и технологии, а именно к технологии изготовления гетерогенных ионообменных биполярных мембран, используемых для обработки технологических солевых растворов с целью получения растворов кислот и щелочей и безреагентной коррекции показателя кислотности рН растворов. Представлен способ изготовления гетерогенной ионообменной биполярной мембраны методом горячего прессования, включающий нанесение на гетерогенной катионообменную мембрану и/или гетерогенной анионообменной мембраны слоя пасты порошка ионообменника, высушивание на воздухе одной или обеих мембран и последующее их прессование, характеризующийся тем, что паста представляет собой порошок ионообменника на водной основе с массовой долей сухого порошка ионообменника 0,25-0,33, перед нанесением слоя пасты одну и/или обе мембраны выдерживают в воде при комнатной температуре в течение 20-24 ч, высушивание осуществляют в течение 12-24 ч, а прессование при температуре 120-140°С, при давлении 14-15 атм в течение 5-10 мин и охлаждают до температуры 40°С без снятия давления, при этом общий расход пасты на изготовления гетерогенной ионообменной биполярной мембраны в расчете на сухой порошок составляет 10-12 г на 1 м2 поверхности одной выдержанной в воде мембраны или 5-6 г на 1 м2 на каждую из поверхностей двух выдержанных в воде мембран. Изобретение обеспечивает возможность получения гетерогенной ионообменной биполярной мембраны, имеющей низкое рабочее напряжение. 1 з.п. ф-лы, 1 ил., 9 табл., 9 пр.

Изобретение относится к способам очистки сточных вод и регенерации органических растворителей и минеральных веществ и может быть использовано в производстве синтетических волокон для повторного использования диметилацетамида (ДМАА), изобутилового спирта (ИБС) и хлористого лития и для организации водооборотной системы. Способ регенерации включает стадии разделения ДМАА, ИБС и воды ректификацией, нейтрализацию исходного раствора гидроксидом лития, полученным в электродиализаторе с биполярными мембранами, осаждение и фильтрацию гидроксида железа, электродиализное концентрирование в электродиализаторе с непроточными камерами концентрирования при плотности тока 0,5-5 А/дм2, доупаривание части сконцентрированного раствора хлористого лития и его кристаллизацию при охлаждении в виде сольвата с ДМАА для возврата в технологический процесс для получения синтетических волокон, направление другой части сконцентрированного раствора хлористого лития в электродиализатор с биполярными мембранами для получения гидроксида лития и соляной кислоты концентрацией 0,1-1 М при плотности тока 0,5-5 А/дм2, направление частично обессоленного раствора ДМАА, ИБС и воды или ДМАА и воды: на глубокую очистку в электродиализатор с ионообменным наполнителем в камерах обессоливания до остаточного содержания хлористого лития 5-50 мг/л, затем - направление его на ректификацию для получения чистых ДМАА и ИБС или ДМАА и возврат концентрата после электродиализа с ионообменным наполнителем на вход электродиализатора для концентрирования хлористого лития. Технический результат - повышение степени очистки ДМАА, ИБС и хлористого лития для повторного использования в производстве параарамидных волокон. 1 ил., 11 табл.

Группа изобретений относится к области противокоррозионной защиты и предназначена для диагностики скрытого коррозионного дефекта и контроля состояния металлических конструкций. Технический результат - предотвращение или резкое снижение подпленочной коррозии защищаемой металлической конструкции, в частности подземного трубопровода, и таким образом повышение надежности противокоррозионной защиты металлических сооружений, находящихся под катодной защитой. Способ диагностирования скрытого коррозионного дефекта под покрытием и нанесенного на металлическую поверхность электрохимически активного композиционного материала для формирования слоя из материала и по крайней мере одного слоя из гидроизолирующего токопроводящего материала. 3 н.п. ф-лы, 3 ил.

Изобретение относится к области противокоррозионной защиты. Способ заключается в том, что формируют на металлической поверхности многослойное защитное покрытие. Первый слой формируют из материала, способного взаимодействовать с водным электролитом и менять свойство электропроводности. Второй слой - из гидроизолирующего токопроводящего материала. Электрохимически активный композиционный материал, способный взаимодействовать с водным электролитом, понижает свое электрическое сопротивление при контакте с водным электролитом и образован при смешивании компонента А и компонента Б. Гидроизоляционный низкоомный материал для формирования второго и последующих слоев защитного покрытия образован при смешивании компонента А1 и компонента Б1. Покрытие включает первый слой, сформированный из электрохимически активного композиционного материала, и, по меньшей мере, один второй слой, сформированный из гидроизоляционного низкоомного материала. В результате достигается возможность при использовании катодной защиты предотвратить или резко уменьшить подпленочную коррозию. 4 н.п. ф-лы, 6 табл.
Изобретение относится к области мембранной техники. На поверхность гетерогенных ионообменных мембран, выполненных из полиэтилена и диспергированного в нем ионполимера, наносят раствор сульфированного политетрафторэтилена в органическом растворителе. Мембрану предварительно высушивают и обрабатывают «ледяной» уксусной кислотой и в раствор сульфированного политетрафторэтилена вносят «ледяную» кислоту, после чего мембрану подвергают термообработке. Способ позволяет получить механически прочные мембраны, способные устойчиво функционировать в электродиализных аппаратах. 5 табл.

 


Наверх