Патенты автора Куц Вадим Васильевич (RU)

Изобретение относится к машиностроению и может быть использовано при сверлении отверстий. Заготовку устанавливают в устройство с кондукторной втулкой. Подвергают упругой деформации нагрузкой, равной пределу пропорциональности материала заготовки. Под действием гидроцилиндра подвижную плиту с установленной заготовкой сближают по направляющим в виде четырех колонн к неподвижной плите до срабатывания концевых выключателей. Производят процесс сверления. После сверления усилие на гидроцилиндре снимают. Подвижная плита возвращается в исходное положение под действием пружин. В результате повышается стойкость инструмента. 2 н.п. ф-лы, 3 ил., 1 табл., 1 пр.

Изобретение может быть использовано для нанесения металлического покрытия посредством 3D принтера. Устройство для нанесения металлического покрытия состоит из корпуса с креплением, позволяющим закрепить устройство на исполнительных механизмах принтера. Корпус представляет собой трубку, выполненную из металла, идентичного металлу, наносимому на заготовку для покрытия, содержит отверстие для загрузки электролита и насадку из материала диэлектрика, накручиваемую на нижнюю часть, в которой закреплен пористый стержень, пропитанный электролитом. Устройство выполнено с возможностью подбора размера и пористости стержня с учетом толщины наносимого единичного слоя. Корпус выполняет роль анода, а заготовка для покрытия является катодом и подключена к отрицательной клемме источника питания. Изобретение позволяет регулировать количество электролита, подаваемого при формировании печатаемого слоя. 1 ил.

Изобретение относится к области машиностроения и может быть использовано при получении цилиндрических оболочек с винтовыми канавками на внутренней поверхности. После установки оболочки в патрон станка в ее полость вводят устройство для нарезания винтовых канавок. Осуществляют продольное перемещение устройства под действием тяговой силы станка с одновременным поворотом. Устройство содержит стержень, на котором закреплен блок режущих оправок, расположенных с шагом P≥Lзаг, где Lзаг - длина цилиндрической оболочки. Режущие зубья имеют угол подъема, равный углу подъема винтовых канавок и не превышающий 45°. Количество оправок в блоке зависит от количества винтовых канавок на внутренней поверхности оболочки и количества зубьев одной оправки. Угловое положение одного режущего зуба соответствует угловому положению одной нарезаемой винтовой канавки. В результате обеспечивается возможность нарезания винтовых канавок на цилиндрических оболочках различных типоразмеров. 2 н.п. ф-лы, 1 ил., 1 пр.

Изобретение относится к металлообработке, в частности к металлорежущим инструментам: к протяжкам для обработки шпоночных пазов в отверстиях изделий, изготовленных из конструкционных материалов, в том числе с высокой твердостью (детали автомобилей, буровых машин, сельхозтехники, станкостроении и т.п.). В конструкцию калибрующей части (1) протяжки для обработки шпоночных пазов в отверстиях дополнительно вводятся три зуба (3, 4, 5) с геометрическими параметрами, равными размеру калибрующих зубьев, по боковым поверхностям которых выполнены мелкоразмерные стружкоделительные канавки (6), расположенных в шахматном порядке друг относительно друга. Величина подъема на первом дополнительном калибрующем зубе должна обеспечивать величину контактных нагрузок в пределах допустимой для материала рабочей части протяжки. Использование тройного ряда мелкоразмерных стружкоделительных канавок, расположенных на боковых поверхностях трех дополнительных зубьях, с геометрическими параметрами, равными размеру калибрующих зубьев, обеспечит получение требуемой шероховатости внутренних базовых поверхностей шпоночного паза отверстия. Технический результат - повышение качества протянутой боковой поверхности шпоночного паза. 2 ил.

Изобретение относится к обработке материалов резанием и может быть использовано при обработке валов с трехгранным РК-профилем. Приведены зависимости для определения координат профиля производящей поверхности дисковой фрезы. Обеспечивается обработка за один оборот фрезы 1/3 части трехгранного РК-профиля, сокращаются габариты инструмента при сохранении качества обработанной поверхности. 1 табл., 1 пр., 1 ил.

Изобретение относится к испытательной технике, к методам определения механических свойств материалов, а именно предела пропорциональности. Сущность: устанавливают испытуемый образец между неподвижной опорной площадкой и подвижной, затем нагружают образец предварительной малой нагрузкой, регистрируемой посредством датчика нагрузки, после чего посредством блока управления подают сигнал на шаговый двигатель и нагружают образец путем перемещения подвижной опоры в сторону неподвижной опоры при помощи винта, причем величину перемещения выбирают исходя из необходимой точности измерения, после первого нагружения снимают нагрузку путем перемещения подвижной опоры в сторону обратной от неподвижной опоры при помощи винта и снимают показание с датчика нагрузки. Если величина нагрузки соответствует величине предварительной малой нагрузки, то повторяют нагружение и снятие нагрузки путем перемещения подвижной опоры при помощи винта на величину n⋅L, где L - величина перемещения, n – число нагружений. Количество нагружений проводят до момента, пока величина нагрузки после снятия нагружения не станет меньше величины предварительной малой нагрузки, после чего фиксируют величину предела пропорциональности материала образца. Технический результат: повышение автоматизации измерения. 1 ил.

Изобретение относится к машиностроению и может быть использовано при правке шлифовальных кругов. Способ включает проведение правки в несколько рабочих проходов и сообщение шлифовальному кругу вращения, а правящему инструменту продольного перемещения вдоль образующей шлифовального круга. Используют правящий инструмент в виде токарного резца с прямоугольной алмазной пластиной, который устанавливают с расположением длинной стороны пластины в ее поперечном сечении перпендикулярно оси вращения шлифовального круга. Перед началом каждого рабочего хода правящий инструмент поворачивают с обеспечением положения короткой стороны упомянутой пластины в поперечном сечении под углом 15-20° к направлению продольного перемещения правящего инструмента. В результате упрощается процесс правки шлифовального круга, уменьшается расход абразивного материала и износ поверхности правящего инструмента, а также повышаются производительность и качество шлифования. 1 ил.

Изобретение относится к области машиностроения и может быть использовано при обработке эксцентриковых валов механизмов, преобразующих механическую энергию в энергию возвратно-поступательного движения. Способ включает обработку дисковой фрезой, выполненной с эллипсоидным профилем в сечении, перпендикулярном оси вращения фрезы, у которого разница между большой и малой полуосями равна двойному эксцентриситету обрабатываемого вала, ось которого располагают параллельно оси дисковой фрезы. Обработку ведут встречным фрезерованием. Обрабатываемому валу сообщают вращение вокруг собственной оси с обеспечением планетарного движения обрабатываемой шейки по окружности, диаметр которой выбирают равным двум эксцентриситетам обрабатываемого вала. Частоту вращения обрабатываемого вала задают равной частоте вращения дисковой фрезы. Упрощается процесс фрезерования, повышается износостойкость обработанной поверхности. 4 ил.

Изобретение относится к обработке материалов резанием и может быть использовано при механической обработке заготовок из полимерных композиционных материалов, преимущественно из углепластика. Технической задачей, на решение которой направлено изобретение, является повышение производительности обработки заготовки и качества обработанной поверхности. Способ включает токарную обработку заготовок из углепластика, при котором заготовке и режущему инструменту сообщают относительное движение формообразования, а подачу осуществляют дискретно. Предварительную обработку заготовки из углепластика производят поверхностным деформированием путем ударного воздействия шариком. Частота ударных воздействий шариком превышает частоту вращения заготовки на величину, равную 1,0-1,2 отношения длины окружности заготовки к диаметру шарика в плоскости, проходящей через пятно контакта шарика и детали перпендикулярно оси шарика. 1 табл.

Способ включает использование охватывающей фрезы с радиальной конструктивной подачей, средний радиус которой больше величины среднего радиуса вала как минимум на величину двойного эксцентриситета вала, сообщение охватывающей фрезе и обрабатываемому валу вращения, причем частоту вращения вала и частоту вращения охватывающей фрезы устанавливают одинаковыми, направления вращения вала и охватывающей фрезы одинаковы по направлению, оси вала и охватывающей фрезы располагают параллельно относительно друг друга, профиль охватывающей фрезы имеет равноосный контур, количество вершин которого и величина эксцентриситета равны количеству вершин и величине эксцентриситета обрабатываемого вала. Достигается повышение качества обрабатываемых поверхностей. 1 ил.

Изобретение относится к машиностроению и может быть использовано при обработке профильных валов с равноосным контуром. Способ включает сообщение фрезе и обрабатываемому валу вращения с одинаковой частотой с использованием дисковой фрезы, профиль которой выполнен с равноосным контуром, а количество вершин и величина эксцентриситета которого равны количеству вершин и величине эксцентриситета обрабатываемого вала. При обработке оси фрезы и обрабатываемого вала устанавливают параллельно. Вращение фрезы осуществляют в одинаковом с обрабатываемым валом направлении. Упрощается обработка валов, обеспечивается возможность подрезания смежных участков поверхностей вала без использования специальных приспособлений, повышается производительность и точность обработки. 1 ил.

 


Наверх