Патенты автора Рило Илья Павлович (RU)

Изобретение относится к области строительства сооружений в сложных инженерно-геологических условиях криолитозоны. Изобретение направлено на создание глубинных термосифонов со сверхглубокими подземными испарителями, порядка 50-100 м и более, с равномерным распределением температуры по поверхности испарителя, расположенного в грунте, что позволяет более эффективно использовать его потенциальную мощность по выносу тепла из грунта и увеличить энергетическую эффективность применяемого устройства. По первому варианту термосифон вместе с гильзой погружают вертикально в грунт на глубину 50 м. Термосифон содержит герметичный трубчатый корпус с зонами испарения, конденсации и транспортной зоной между ними. Конденсатор в зоне конденсации выполнен в виде центральной трубы большого диаметра и восьми патрубков меньшего диаметра с внешним оребрением из алюминия, расположенных вокруг центральной трубы. Патрубки соединены с отверстиями в ней, а в нижней части центральной трубы размещен сепаратор со сквозными патрубками для прохода парокапельной смеси хладагента (аммиака в первом варианте или углекислого газа - во втором) из испарителя в конденсатор и стока конденсата аммиака из конденсатора. Сквозные патрубки смонтированы на трубной доске. К патрубку для стока конденсата, расположенного по центру доски, снизу подсоединена внутренняя полиэтиленовая труба, которая опущена до низа трубы корпуса испарителя. В нижней части полиэтиленовой трубы выполнены отверстия для перетока жидкого хладагента в межкольцевое пространство, образованное стенками труб корпуса испарителя и внутренней трубы. По первому варианту (хладагент - аммиак) термосифон погружен в гильзу, заполненную 25-30%-ной аммиачной водой. Степень заполнения термосифона жидким аммиаком ε=0,47-0,52 при 0°С. По второму варианту термосифон заполняют углекислым газом и погружают вертикально в грунт без гильзы, степень заполнения жидким углекислым газом ε=0,45-0,47. 2 н. и 2 з.п. ф-лы, 5 ил., 2 пр.

Изобретение относится к строительству промышленных и гражданских объектов в криолитозоне с целью обеспечения их надежности. Термосифон включает конденсатор, испаритель и транзитный участок между ними в виде круглой с обеих сторон заглушенной трубы, вертикально установленной и погруженной на глубину испарителя в грунт, из полости трубы откачан воздух, взамен полость заправлена аммиаком, часть полости заполнена жидким аммиаком, остальной объем - насыщенным паром аммиака. Диаметр трубы составляет 33,7×3,5 мм, в испарителе по оси симметрии трубы коаксиально установлена внутренняя труба диаметром 20×2 мм из материала с низким коэффициентом теплопроводности. Степень заполнения термосифона аммиаком составляет 0,45-0,85 (отношение объема жидкости к общему внутреннему объему трубы). Внизу внутренняя труба на длине 600 мм перфорирована шестью отверстиями диаметром 10 мм, длина термосифона 10-16 м, уровень аммиака в испарителе выше торца внутренней трубы не менее 0,1 м, конденсатор с площадью теплообменной поверхности оребрения 2,44 м2, длина оребренной трубы 1,18 м, диаметр оребрения 67 мм. Технический результат состоит в повышении надежности работы термосифона заполненного аммиаком, обеспечении более низких температур охлаждаемого грунта и интенсивности теплообмена при простоте конструктивного исполнения. 1 ил., 1 табл., 1 пр.

Изобретение относится к способу термостабилизации многолетнемерзлых и слабых грунтов и может быть использовано в производстве термосифонов (термостабилизаторов). Способ заправки термостабилизатора жидким синтетическим аммиаком включает очистку жидкого аммиака от примесей инертных газов, для чего его перекачивают в заправочную емкость, где нагревают до температуры 18-30°C при давлении в заправочной емкости 0,8-1,19 МПа с постепенным снижением давления аммиака в емкости, заполненной жидким аммиаком, поддерживая его кипение на протяжении 10-15 с по объему заправочной емкости. Удаляют инертные газы вместе с испарившимся аммиаком путем продувки в систему улавливания аммиака, причем количество (кратность) продувок зависит от объема заправочной емкости и перепада температур, не превышающего 1°C на оребренной части конденсатора. Затем очищенный жидкий аммиак подают в дозатор и далее в термостабилизатор. Технический результат состоит в обеспечении осуществления процесса очистки синтетического аммиака от примесей инертных газов до необходимой нормы заправки термостабилизаторов, улучшении производственных и экономических характеристик заправки и эксплуатации термостабилизаторов. 1 ил.

Изобретение относится к сельскому хозяйству. Способ улавливания аммиака узла заправки термостабилизаторов вечномерзлых грунтов путем поглощения газообразного аммиака в системе с циркулирующей аммиачной водой, причем в процессе улавливания аммиака основное количество аммиака, поступившее из заправочной емкости в термостабилизатор, конденсируют, при этом дросселируют пульсирующий поток газообразного аммиака, снижают абсолютное давление аммиака до 0,1-0,12 МПа и направляют его в конденсатор, где его вновь подвергают конденсации при температуре минус (25-40)°C, и далее направляют сконденсированный аммиак в сборник, удаляют газообразный аммиак и выделившиеся в процессе улавливания аммиака инертные газы из конденсатора и из сборника в эжектор, где производят последующее улавливание аммиака с помощью воды, при этом ведут непрерывный процесс поглощения при температуре 10°-40°C в одну ступень, при этом создают избыточное давление паров аммиака в пределах 5-100 кПа с использованием аммиачной воды концентрацией 5-25% с последующим выводом этой аммиачной воды из эжектора в накопительную емкость. Изобретение позволяет повысить эффективность экологичности, снизить энергозатраты. 4 з.п. ф-лы, 1 ил.

Изобретение относится к области строительства на многолетнемерзлых и слабых грунтах и касается выполнения систем замораживания и термостабилизации грунтовых оснований сооружений. Система для температурной стабилизации оснований сооружений на вечномерзлых грунтах включает конденсатор, выполненный в виде системы труб, испаритель, связанный с гидрозатвором и с трубопроводами, подводящими и отводящими теплоноситель, размещенными равномерно по всей площади отсыпки грунта основания, оснащенного слоем теплоизоляции. Дополнительно содержит расположенный под конденсатором буфер-сепаратор, представляющий собой вертикально ориентированную секцию в виде трех расположенных друг под другом, связанных между собой горизонтально направленных труб, внутренний объем которых суммарно равен объему уложенного в отсыпке грунта основания испарителя, представляющего собой параллельно расположенные змеевиковоподобные трубы, связанные отводящими трубопроводами с оснащенной завихрителем верхней горизонтально направленной трубой упомянутого буфера-сепаратора, нижняя горизонтально направленная труба которого через гидрозатвор связана с помощью подводящих теплоноситель трубопроводов с испарителем. В качестве теплоносителя используется аммиак или двуокись углерода. Технический результат состоит в повышении промораживающей и несущей способности основания, обеспечении управления и контроля за процессом промораживания грунта и процессом резервирования надежности системы. 4 ил.

Изобретение относится к области строительства на многолетнемерзлых грунтах, в частности к подготовке замораживающих устройств - термостабилизаторов к эксплуатации. Предлагается способ улавливания аммиака узла заправки термостабилизаторов вечномерзлых грунтов путем поглощения газообразного аммиака в системе с циркулирующей аммиачной водой. Непрерывный процесс поглощения газообразного аммиака ведут в эжекторе при температуре 20-40°C в одну ступень. Создают избыточное давление паров аммиака 30-100 кПа и используют аммиачную воду концентрацией 20-25% с последующим выводом этой аммиачной воды из эжектора в накопительную емкость, которую размещают в грунте, через стенки которой в грунт производят отвод тепла, полученного от растворения газообразного аммиака в аммиачной воде. Одновременно регулируют уровень жидкости в накопительной емкости. Производят откачку аммиачной воды из накопительной емкости и подают свежую жесткую воду в накопительную емкость, а также периодически выгружают из нее выпавшие в осадок соли жесткости. Технический результат состоит в повышении эффективности при одновременном снижении себестоимости и снижении энергозатрат с возможностью применения жесткой воды. 2 ил.

 


Наверх