Патенты автора Хохлявин Никита Александрович (RU)

Изобретение относится к композиционным материалам C/C-SiC для элементов тормозов, таких как тормозные диски. Тормозное устройство состоит из нескольких контактирующих между собой элементов с двумя рабочими поверхностями трения, выполненных из композиционного материала, содержащего каркас объемной структуры из углеродных волокон и матрицу, включающую в себя первую фазу, прилегающую к армирующим волокнам и содержащую пироуглерод, вторую жаропрочную фазу, полученную, по крайней мере, частично за счет пиролиза материала-предшественника в жидком состоянии, и фазу карбида кремния, полученную в процессе силицирования. Фаза карбида кремния с большим его содержанием расположена на ограниченной глубине, начиная от рабочей поверхности трения. Контактирующие между собой элементы установлены с чередованием в них отличающихся содержанием карбида кремния композиционных материалов; при этом содержание углеродных волокон в материалах со стороны поверхностей трения существенно меньше, чем в материале сердцевины. Композиционный материал, имеющий со стороны контактных поверхностей меньшее содержание карбида кремния, может дополнительно содержать нитрид бора гексагональной структуры. Способ изготовления элементов тормозного устройства включает формирование из углеродных волокон каркаса объемной структуры и уплотнение его углерод-карбидокремниевой матрицей. Каркас формируют с большим содержанием углеродных волокон в сердцевине. Для получения углеродной матрицы формируют межфиламентную пироуглеродную фазу и/или пироуглеродное покрытие на углеродных волокнах, затем каркас пропитывают суспензией частиц термопластичного полимера, не дающего при пиролизе коксового остатка, размером не более преобладающего размера пор в каркасе рабочих слоев и более преобладающего размера пор в каркасе сердцевины изделия, после чего каркас пропитывают коксообразующим связующим, формуют углепластиковую заготовку, производят ее карбонизацию и насыщение пироуглеродом в среде метана термоградиентным методом с передвижением зоны пиролиза с температурой в зоне 980±20°С с переменной скоростью по толщине заготовки элемента в зависимости от требуемой плотности материала сердцевины, материалов со стороны его рабочих поверхностей и на границе между ними. Перед силицированием заготовки в порах материала формируют кокс или наноуглерод, а силицирование проводят паро-жидкофазным методом при первоначальном массопереносе кремния в поры материала по механизму капиллярной конденсации его паров в интервале температур 1300-1600°С с последующим нагревом и выдержкой при 1700-1850°С. Техническим результатом изобретения является повышение комфортности торможения при одновременном снижении затрат и длительности цикла изготовления тормозных элементов. 2 н. и 3 з.п. ф-лы, 2 ил., 1 табл., 8 пр.

Изобретение относится к композиционным материалам C/C-SiC для элементов тормозов, таких как тормозные диски. Тормозное устройство состоит из нескольких элементов с двумя рабочими поверхностями трения, выполненных из композиционного материала на основе дискретных по длине углеродных волокон и матрицы, включающей в себя первую фазу, расположенную вблизи армирующих волокон и полученную за счет пиролиза материала-предшественника в жидком состоянии, вторую фазу в виде пироуглерода и фазу карбида кремния, полученную в процессе силицирования. В нем элементы со стороны их рабочих поверхностей выполнены из материалов с отличающимся содержанием карбида кремния или в каждом из элементов материал с одной из рабочих поверхностей трения имеет большее содержание карбида кремния, чем с другой; при этом дискретные по длине углеродные волокна композиционного материала фрагментированы по толщине вплоть до размеров филаментов, а фаза карбида кремния с большим ее содержанием расположена на ограниченной глубине элемента, начиная от рабочей поверхности трения, при содержании ее в сердцевине элемента не более 10 об.%. Способ изготовления элементов тормозного устройства включает приготовление пресс-массы на основе дискретных по длине углеродных волокон и коксообразующего связующего, формование углепластиковой заготовки прессованием, ее карбонизацию, насыщение пироуглеродом и силицирование. При этом для приготовления пресс-массы используют фрагментированные по толщине, вплоть до размеров филаментов, дискретные по длине углеродные волокна, объединенные механизированным методом в мат с преимущественной их ориентацией в нем перпендикулярно его толщине, насыщение пироуглеродом производят в среде метана термоградиентным методом с передвижением зоны пиролиза с температурой в зоне 980±20°С с переменной скоростью по толщине заготовки элемента в зависимости от требуемой плотности материала сердцевины, материалов со стороны его рабочих поверхностей, и на границе между ними, изменяемой, например, в пределах 0,125-0,25 мм/ч по толщине сердцевины, в пределах от 0,5 мм/ч до скорости, соответствующей «проскоку» зоны пиролиза - по толщине материалов со стороны его рабочих поверхностей и в пределах от 1,0 до 0,25 мм/ч - на границе между ними; при формировании карбидокремниевой матрицы перед силицированием заготовки в порах материала формируют кокс путем пропитки коксообразующим связующим с последующей карбонизацией и/или наноуглерод путем выращивания его в порах материала каталитическим газофазным методом или путем пропитки суспензией наноразмерных частиц углерода, а силицирование проводят паро-жидкофазным методом при первоначальном массопереносе кремния в поры материала по механизму капиллярной конденсации его паров в интервале температур 1300-1600°С с последующим нагревом и выдержкой при 1700-1850°С. Техническим результатом изобретения является повышение комфортности торможения. 2 н.п. ф-лы, 1 табл.

Изобретение предназначено для использования при изготовлении герметичных углеграфитовых материалов, предназначенных для работы в химической, химико-металлургической промышленности, а также в качестве технологической оснастки, используемой в процессе силицирования при изготовлении изделий из углерод-карбидокремниевых композиционных материалов. Техническим результатом является расширение номенклатуры углеграфитовых материалов для использования при изготовлении герметичных изделий и снижение стоимости их изготовления. Способ герметизации изделий из углеграфитовых материалов включает заполнение поверхностных пор пригодного к герметизации материала изделия композицией из порошка углерода или его смеси с карбидом кремния и связующего, формирование на поверхности изделия шликерного покрытия на основе указанной композиции и силицирование изделия путем обработки его в вакууме в парах кремния с их конденсацией непосредственно в порах материала, в том числе на стадии окончательного охлаждения. При этом при заполнении поверхностных пор материала изделия и формировании на его поверхности шликерного покрытия используют композицию из порошков нано- и/или ультрадисперсного углерода или углерода и ультра- и/или мелкодисперсного карбида кремния, или углерода, ультра- и/или мелкодисперсных карбида кремния и кремния и коксообразующего связующего холодного отверждения, а перед силицированием изделия проводят карбонизацию коксообразующего связующего, осуществляемую в едином технологическом процессе с силицированием, которая по времени предшествует силицированию. 2 ил.

Изобретение предназначено для использования при изготовлении изделий, работающих в окислительных газовых потоках, в абразивосодержащих газовых и жидкостных потоках, а также в качестве пар трения. Предлагаемый способ изготовления тонкостенных изделий из углерод-карбидокремниевого композиционного материала с переменным содержанием карбида кремния включает формирование каркаса слоистой или слоисто-прошивной структуры из углеродных и/или карбидокремниевых волокон, уплотнение его углеродным материалом с получением заготовки из углеродсодержащего композиционного материала с открытой пористостью, уменьшающейся от защитных слоев к несущем слоям материала будущего изделия от 20-60 до 6-12%, и ее силицирование. При формировании каркаса на границе между защитными и несущими слоями будущего изделия прокладывают слой графитовой фольги и/или несколько пограничных слоев пропитывают суспензией на основе углеродных наночастиц; уплотнение каркаса углеродным материалом производят в следующей последовательности: каркас частично уплотняют пироуглеродом вакуумным изотермическим методом до его содержания 8-15 вес.%, формуют пластиковую заготовку на основе какркаса и коксообразующего полимерного связующего, карбонизуют ее и насыщают пироуглеродом вакуумным изотермическим методом при температуре 1000-1050°C до открытой пористости материала несущих слоев 6-12%, при этом защитные слои материала заготовки из карбонизованного пластика со стороны их расположения экранируют от доступа к ним углеродсодержащего газа, а температуру устанавливают тем выше, чем меньше толщина насыщаемой пироуглеродом заготовки. После этого поры материла заготовки заполняют нанодисперсным углеродом или смесью нанодисперсного и мелкодисперсного углерода с размерами частиц не более 5 мкм, а силицирование осуществляют паро-жидкофазным методом путем капиллярной конденсации паров кремния в интервале температур на заготовке 1300-1600°C, давлении в реакторе не более 27 мм рт.ст., при температуре паров кремния, превышающей температуру заготовки соответственно на 100-10 градусов, с последующим нагревом и выдержкой при температуре 1750-1800°C в течение 1-2 часов. Заполнение пор материала нанодисперсным углеродом производят путем выращивания в них частиц наноуглерода из газовой фазы, а капиллярную конденсацию паров кремния проводят при нагреве с 1300 до 1600°C с изотермическими выдержками в указанном интервале температур. Технический результат - расширение технологических возможностей способа изготовления тонкостенных изделий из КМ с переменным по толщине содержанием карбида кремния и повышение их эксплуатационных характеристик. 2 з.п. ф-лы, 1 табл., 11 пр.

Изобретение относится к углерод-карбидокремниевым композиционным материалам. Технический результат изобретения заключается в повышении эксплуатационных характеристик изделий. Формируют каркас из углеродных волокон, уплотняют его углеродом с получением заготовки из углерод-углеродного композиционного материала с открытой пористостью, уменьшающейся от защитных слоев к несущим слоям материала будущего изделия от 20-60 до 6-12%. Заполняют открытые поры материала заготовки дисперсным углеродом и проводят силицирование. В качестве дисперсного углерода используют нанодисперсный углерод или его смесь с мелкодисперсным углеродом с размером частиц не более 5 мкм. Силицирование осуществляют парожидкофазным методом при первоначальном массопереносе кремния в поры материала путем капиллярной конденсации его паров в интервале температур на заготовке 1300-1600°C и давлении в реакторе не более 27 мм рт.ст. при температуре паров кремния, превышающей температуру заготовки соответственно на 100-10°. Затем проводят нагрев и выдержку заготовки при 1750-1850°C. 2 з.п. ф-лы, 1 табл.

Изобретения могут быть использованы в аппаратах химической, химико-металлургической отраслях промышленности, а также в производстве особо чистых материалов. Неразъеёмная монолитная деталь аппарата, снабженная выступающими частями, изготовлена из углерод-углеродного композиционного материала на основе каркаса тканепрошивной структуры. Для изготовления такой детали сначала формируют тканепрошивные каркасы закладных элементов в форме труб и/или пластин с фланцами путем выкладки слоев ткани с отбортовкой на фланцевый участок. Уплотняют пироуглеродом термоградиентным методом, оставляя отбортованные на фланцевый участок слои ткани ненасыщенными пироуглеродом. Механически обрабатывают насыщенный пироуглеродом участок. Затем формируют каркас основной части на формообразующей оправке путеём последовательного вшивания в него ненасыщенных пироуглеродом слоеёв ткани, насыщения их пироуглеродом термоградиентным методом и механической обработки ранее необработанных участков детали. Оправка-нагреватель предназначена для размещения основного участка каркаса закладного элемента, а формообразующая оправка, не являющаяся нагревателем, предназначена для размещения фланцевого участка. Техническим результатом является повышение срока службы деталей в химически агрессивных средах и/или при высоких температурах, увеличение их габаритов без усложнения технологии. 3 н. и 1 з.п. ф-лы, 5 ил.

 


Наверх